Функциональная система анохина кратко. Теория функциональных систем П. К. Анохина. Информационный анализ и синтез

Её основные постулаты

Под функциональными системами понимают такие саморегулирующиеся динамические организации, деятельность всех составных компонентов которых взаимосодействует достижению полезных для организма в целом приспособительных результатов.

Такими результатами, прежде всего, являются различные показатели обмена веществ и внутренней среды организма. Кроме того, это многочисленные результаты поведенческой деятельности живых существ, определяющие удовлетворение их ведущих потребностей. В организме, таким образом, столько функциональных систем, сколько полезных, приспособительных результатов.

Например, из учения П. К. Анохина о функциональных системах вытекает одна из ведущих закономерностей роста и развития организма – СИС-ТЕМОГЕНЕЗ. Последний очень наглядно прослеживается на ранних этапах развития ребёнка: новорожденный не способен к какому-либо активному физическому действию, кроме осуществления врождённых рефлексов. На определённом этапе ребёнок повернётся на бочок, когда достаточного развития достигнет функциональная система, обеспечивающая этот акт (соответствующее развитие костно-связочно-мышечного аппарата, механизма ориентации в пространстве и т. п.). Так же, далее, он, в своё время, сядет, пойдёт, побежит, когда определённой степени развития достигнут функциональные системы, обеспечивающие эти акты. Таким образом, СИСТЕМОГЕНЕЗ – это избирательное и ускоренное развитие анатомо-физиологических образований (функциональных систем), обеспечивающих человеку выживание, функционирование на каждом отдельном этапе развития . Функциональные системы созревают неравномерно, включаются поэтапно, сменяются, обеспечивая организму приспособление в различные периоды онтогенетического развития.

Состав функциональных систем не определяется топографической близостью структур или их принадлежностью к какому-либо разделу анатомической классификации. В функциональную систему могут быть вовлечены как близко, так и отдалённо расположенные структуры организма. Единственным фактором, определяющим избирательность этих соединений, является биологическая и физиологическая архитектура функции, а единственным критерием их полноценности является конечный приспособительный эффект для целого организма, наступающий при развёртывании процессов в данной функциональной системе.

Таким образом, центральное звено любой функциональной системы представляет тот или иной полезный для организма в целом, для его метаболизма, результат. Последнее (результат) – это «визитная карточка» любой функциональной системы. Любое состояние результата и особенно отклонение от уровня, обеспечивающего нормальный метаболизм, воспринимается соответствующими рецепторами, которые передают информацию в специальные центры. Последние, в свою очередь, мобилизуют различные исполнительные механизмы, которые приводят результат к оптимальному для организма уровню. В итоге, функциональные системы работают по принципу саморегуляции.


Функциональные системы – единицы целостной деятельности организма. Они представляют собой динамические саморегулирующиеся организации, формирующиеся на метаболической основе или под влиянием факторов окружающей, а у человека – и социальной среды.

Многообразие полезных для организма приспособительных результатов указывает на то, что число функциональных систем, составляющих раз-личные стороны жизнедеятельности целого организма, может быть чрезвычайно велико. Одни функциональные системы своей деятельностью определяют различные показатели внутренней среды организма, другие – поведенческую деятельность и взаимодействие с окружающей средой.

Любая функциональная система, согласно представлениям П. К. Анохина, имеет принципиально однотипную организацию и включает следующие общие, универсальные для разных систем, периферические и центральные узловые механизмы:

· полезный приспособительный результат как ведущее звено функциональной системы – это «пусковой механизм» системы;

· рецепторы результата – дающие «задание» на получение приспособительного результата (здесь заканчивается безусловная часть рефлекса);

· обратную афферентацию , идущую от рецепторов результата в центральные образования функциональной системы как необходимая и универсальная стадия любого условного рефлекса или поведенческого акта, когда даётся весь комплекс информации «обратной связи» в центральное звено функциональной системы, насколько выданное решение корректно поставленной задаче;

· центральную архитектуру (центры коры головного мозга), представляющую избирательное объединение функциональных систем нервных элементов различных уровней, являющуюся анализатором (корректором) принятого решения (предсказание и контроль результатов действия);

· исполнительные соматические, вегетативные и эндокринные компоненты , включающие организованное целенаправленное поведение в рамках, определяемых сложившимся решением функциональной системы.

В целом организме взаимодействие различных функциональных систем строится на основе принципов иерархии и многосвязного, мультипараметрического взаимодействия результатов деятельности отдельных функциональных систем.

Принцип иерархии состоит в том, что в каждый данный момент времени деятельность организма определяется функциональной системой, доминирующей в плане выживаемости или адаптации к окружающей среде (принцип доминанты ). Другие функциональные системы выстраиваются в иерархическом порядке в соответствии с их биологической значимостью и необходимостью для социальной деятельности человека.

Смена доминирующих функциональных систем происходит постоянно и отражает сущность непрерывно происходящего обмена веществ и постоянного взаимодействия организма с окружающей средой. Однако все функциональные системы находятся в тесной взаимосвязи и изменение одного показателя, результата деятельности какой-либо функциональной системы, тут же сказывается на результатах деятельности других функциональных систем.

Целостный организм в каждый данный момент времени представляет слаженное взаимодействие, интеграцию (по вертикали и горизонтали) различных функциональных систем, что определяет нормальное течение метаболических процессов. Нарушение этой интеграции, если оно не компенсируется специальными механизмами, означает заболевание и может привести к гибели организма.

Изучая психофизиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о том, что рефлекс характеризует двигательный или секреторный ответ определенной структуры, а не организма в целом. В этой связи он выдвинул гипотезу о существовании функциональных систем, определяющих ответ всего организма на любые стимулы и лежащих в основе поведения.

По П.К. Анохину, функциональная система-это динамическая саморегулирующая организация, временно объединяющая различные органы, системы и процессы, которые взаимодействуют для получения полезного приспособительного результата в соответствии с потребностями организма. В основе функциональной системы лежит положение о том, что именно конечный (приспособительный) результат определяет комбинирование частных механизмов в функциональную систему. Каждая функциональная система возникает для достижения полезного приспособительного результата, необходимого для удовлетворения той или иной потребности организма. Таким образом, полезный приспособительный результат есть основной системообразующий фактор.

Выделяют три группы потребностей, в соответствии с которыми формируются три вида функциональных систем: внутренние -для сохранения гомеостатических показателей; внешние (поведенческие) -для адаптации организма к внешней среде; и социальные - для удовлетворения социальных потребностей человека.

С этих позиций организм человека есть совокупность различных функциональных систем, которые формируются в зависимости от возникающих потребностей организма. В каждый данный момент времени одна из них становится ведущей, доминирующей.

Функциональная система отличается способностью к постоянной перестройке, к избирательному вовлечению мозговых структур для осуществления меняющихся поведенческих реакций. При нарушении функции в какой-то части системы происходит срочное перераспределение активности во всей системе. В результате включаются дополнительные механизмы, направленные на достижение конечного приспособительного результата.

В структуре функциональной системы выделяют несколько функциональных блоков (рис. 13.3):

  • 1) мотивация;
  • 2) принятие решения;
  • 3) акцептор результата действия;
  • 4) афферентный синтез;
  • 5) эфферентный ответ;
  • 6) полезный результат системы;
  • 7) обратная афферентация.

Афферентный синтез - это процесс анализа и интеграции различных афферентных сигналов. В это время решается вопрос о том, какой результат должен быть получен. Все афферентные сигналы можно разделить на четыре компонента:

1. Мотивационное возбуждение. Любой поведенческий акт направлен на удовлетворение потребностей (физиологических, познавательных, эстетических, и т.д.). Задача афферентного синтеза-отбор из огромного количества информации наиболее значимой, соответствующей доминирующей потребности. Эта потребность является мотивом для организации соответствующей поведенческой реакции. Возбуждение, формирующееся в центрах функциональной системы для реализации доминирующей потребности, называется мотивационным. Оно создается благодаря избирательной активации структур коры головного мозга со стороны таламуса и гипоталамуса и определяет «что организму нужно?».

Рис.13.3.

Например, изменение параметров внутренней среды при длительном неупотреблении пищи приводит к формированию комплекса возбуждений, связанных с пищевой доминирующей мотивацией.

  • 2. Обстановочная афферентация - второй компонент афферентного синтеза. Она представляет собой поток нервных импульсов, вызванных множеством раздражителей внешней или внутренней среды, предшествующих или сопутствующих действию пускового раздражителя, т.е. она определяет, «в каких условиях находится организм». Например, обстановочная афферентация будет нести информацию о том, где находится испытывающий чувство голода человек, какую деятельность он выполняет в данный момент и т.д.
  • 3. Аппарат памяти в структуре афферентного синтеза обеспечивает оценку поступающей информации путем сопоставления ее со следами памяти, имеющими отношение к данной доминирующей мотивации. Например, находился ли человек ранее в этом месте, были ли здесь источники пищи и т.д.
  • 4. Пусковая афферентация-это комплекс возбуждений, связанных с действием сигнала, который является непосредственным стимулом для запуска той или иной реакции, т.е. в нашем примере это вид пищи.

Адекватная реакция может осуществляться лишь при действии всех элементов афферентного синтеза, что создает предпусковую интеграцию нервных процессов. Один и тот же пусковой сигнал в зависимости от обстановочной афферентации и аппарата памяти может вызвать разную реакцию. В нашем примере она будет различной при наличии и отсутствии у человека денег на приобретение пищи.

В основе нейрофизиологического механизма этой стадии лежит конвергенция возбуждений разной модальности к нейронам коры головного мозга, преимущественно лобных отделов. Большое значение в осуществлении афферентного синтеза играет ориентировочный рефлекс.

Принятие решения - это узловой механизм функциональной системы. На этом этапе формируется конкретная цель, к которой стремится организм. При этом возникает избирательное возбуждение комплекса нейронов, обеспечивающее возникновение единственной реакции, направленной на удовлетворение доминирующей потребности.

Организм имеет множество степеней свободы в выборе реакции. Именно при принятии решения происходит торможение всех степеней свободы, кроме одной. Например, когда человек хочет есть, он может купить еду, или поискать более дешевую, или пойти обедать домой. При принятии решения на основе афферентного синтеза будет избран единственный вариант, наиболее отвечающий всему комплексу информации о данной ситуации.

Принятие решения - это критический этап, который переводит один процесс (афферентный синтез) в другой -программу действий, после чего система приобретает исполнительный характер.

Акцептор результата действия - один из наиболее интересных элементов функциональной системы. Это комплекс возбуждений элементов коры и подкорки, обеспечивающий прогнозирование признаков будущего результата. Он формируется одновременно с реализацией программы действий, но до начала работы эффектора, т.е. опережающе. Когда действие осуществляется и афферентная информация о результатах этих действий переходит в ЦНС, эта информация в данном блоке сравнивается со сформированной ранее «моделью» результата. Если возникает несоответствие между моделью результата и результатом, полученным в действительности, в реакцию организма вносятся поправки до тех пор, пока запрограммированный и полученный в действительности результат не совпадут (причем коррекция может касаться и модели результата). В нашем примере, съев порцию пищи, человек может продолжать испытывать чувство голода и тогда он будет искать дополнительную пищу для удовлетворения пищевой потребности.

Эфферентный синтез - процесс формирования комплекса возбуждений в структурах ЦНС, обеспечивающий изменение состояния эффекторов. Это приводит к изменению деятельности различных вегетативных органов, включению желез внутренней секреции и поведенческих реакций, направленных на достижение полезного приспособительного результата. Эта комплексная реакция организма весьма пластична. Ее элементы и степень их вовлеченности могут варьировать в зависимости от доминирующей потребности, состояния организма, обстановки, предыдущего опыта и модели желаемого результата.

Полезный приспособительный результат-изменение состояния организма после совершения деятельности, направленной на удовлетворение доминирующей потребности. Как говорилось выше, именно полезный результат является системообразующим фактором функциональной системы. При совпадении полезного результата с акцептором результата действия данная функциональная система сменяется другой, формирующейся для удовлетворения новой доминирующей потребности.

П.К. Анохин подчеркивал важность обратной афферентации для достижения полезного приспособительного результата. Именно обратная афферентация позволяет сопоставить результат действия с поставленной задачей.

В нашем примере человек будет насыщаться, пока импульсация от внутренних органов о результате данного действия человека в акцепторе результата действия не совпадет с комплексом возбуждений, являющихся моделью «сытости».

Любая функциональная система работает по принципу опережения конечного результата (предвидения) и обладает рядом свойств, перечисленных ниже:

  • Динамичность: функциональная система - временное образование из различных органов и систем для удовлетворения ведущей потребности организма. Различные органы могут входить в состав нескольких функциональных систем.
  • Саморегуляция: поддержание гомеостаза обеспечивается без вмешательства извне за счет наличия обратной связи.
  • Целостность: системный целостный подход как ведущий принцип регуляции физиологических функций.
  • Иерархия функциональных систем: иерархия полезных для организма приспособительных результатов обеспечивает удовлетворение ведущих потребностей по уровню их значимости.
  • Многопараметричность результата: любой полезный приспособительный результат имеет много параметров: физические, химические, биологические, информационные.
  • Пластичность: все элементы функциональных систем, кроме рецепторов, обладают пластичностью и могут гибко взаимоза- менять и компенсировать друг друга для достижения конечного приспособительного результата.

Теория функциональных систем позволяет рассматривать разнообразные реакции организма-от простых, направленных на поддержание гомеостаза, - до сложных, связанных с сознательной социальной деятельностью человека. Она объясняет пластичность и направленность поведения человека в различных ситуациях.

Рассматривая образование функциональных систем в онтогенезе (теория системогенеза), П.К Анохин установил, что формирование всех ее элементов происходит с опережением возникновения ведущих потребностей организма. Это позволяет ему заблаговременно сформировать морфофункциональные и психофизиологические структуры для удовлетворения возникающих потребностей. Так, функциональная система свертывания крови формируется к первому году жизни, т.е. к периоду, когда ребенок начинает ходить и, следовательно, повышается угроза его травмирования. Функциональная система репродукции формируется к началу юношеского возраста, когда появляется физиологическая и психологическая готовность и возможность продолжения рода. Таким образом, знание периодов становления ведущих потребностей организма позволяет понять формирование соответствующих функциональных систем.

ФС – морфо-физиологическая основа ВПФ как совокупность всех процессов, протекающих в различных системах, обеспечивающих функционирование ВПФ (афферентные и эфферентные составляющие).

Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Основные положения теории функциональной системы были сформулированы П. К. Анохиным еще в 1935 г. Теория функциональных систем, предложенная П.К.Анохиным, постулирует принципиально новый подход к физиологическим явлениям. Она изменяет традиционное "органное" мышление и открывает картину целостных интегративных функций организма. Возникнув на основе теории условных рефлексов И.П.Павлова, теория функциональных систем явилась ее творческим развитием. Вместе с тем в процессе развития самой теории функциональных систем она вышла за рамки классической рефлекторной теории и оформилась в самостоятельный принцип организации физиологических функций. Функциональные системы имеют отличную от рефлекторной дуги циклическую динамическую организацию, вся деятельность составляющих компонентов которой направлена на обеспечение различных приспособительных результатов, полезных для организма и для его взаимодействия с окружающей средой и себе подобными.

Наиболее принципиальным положением теории является то, что системы могут быть самыми разнообразными по типу задач, ими решаемых, и по сложности этих задач, но архитектура систем при этом остается одной и той же. Это означает, что различные функциональные системы - от системы терморегуляции до системы по­литического управления - имеют сходную структуру. Основными компонентами любых функциональных систем являются следующие:

Афферентный синтез;

Принятие решения;

Модель результатов действия (акцептор действия) и программа действия;

Действие и его результат;

Обратная связь.

Афферентный синтез представляет собой обобщение потоков информации, приходящей как снаружи, так и извне. Субкомпонентами афферентного синтеза являются доминирующая мотивация, обстано­вочная афферентация, пусковая афферентация и память. Функция доминирующей мотивации - обеспечение общей мотивационной активации. «Первопричиной» лю­бого действия является потребность, мотивация. Переевшее животное не будет лихо­радочно искать пищу, человек, лишенный честолюбия, мало озабочен стремлением к продвижению по служебной лестнице. Функция обстановочной афферентации - обеспечение общей готовности к действию. Как только в среде появляется то, что спо­собно удовлетворить нашу потребность, включается механизм пусковой афферента­ции. Пусковая афферентация инициирует поведение. Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей. Пусковая афферентация – последний компонент афферентного синтеза.

Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального модуляционного механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующие и инактивирующие влияния, исходящие из лимбической и ретикулярной систем мозга. Поведенческим выражением роста уровня активации в центральной нервной системе, создаваемым этим механизмом, является появление ориентировочно-исследовательских реакций и поисковой активности животного.

Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей. Предполагается, что акцептор результатов действия представлен сетью вставочных нейронов, охваченных кольцевым взаимодействием. Возбуждение, попав в эту сеть, длительное время продолжает в ней циркулировать. Благодаря этому механизму и достигается продолжительное удержание цели как основного регулятора поведения.

Следующая стадия – это само выполнение программы поведения. Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.

Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией. Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата.

Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется.

  • < Назад
  • Вперёд >

Министерство высшего профессионального образования РФ

Российский Государственный Гуманитарный Университет

Институт Психологии

Сорокин Александр Алексеевич

I курс, 1 группа.

Реферат

“Основные понятия в теории функциональных систем”.

Москва,

1999 год.

Что есть функциональная система ?

В данной работе я должен по возможности ясно и коротко описать основные понятия теории П.К. Анохина о функциональных системах, как принципах жизнедеятельности. Поэтому прежде чем разбирать составляющие системы, надо осветить что есть она сама и для чего она функционирует.

Основные физиологические закономерности таких систем были сформулированы лабораторией Анохина ещё в 1935 году, т.е. задолго до того, как были опубликованы первые работы по кибернетике, однако смысл публикаций соответствовал тем принципам, которые Анохин выделил позже. По своей архитектуре функциональные системы целиком соответствуют любой кибернетической модели с обратной связью, и потому изучение свойств различных функциональных систем организма, сопоставление роли в них частных и общих закономерностей, несомненно, послужит познанию любых систем с автоматической регуляцией.

Под функциональной системой мы понимаем такое сочетание процессов и механизмов, которое формируясь динамически в зависимости от данной ситуации, непременно приводя к конечному приспособительному эффекту, полезному для организма как раз именно в этой ситуации . То есть в приведённой формулировке до нас хотят донести, что функциональная система может быть составлена из таких аппаратов и механизмов, которые могут быть весьма отдалёнными в анатомическом отношении. Получается, что состав функциональной системы (далее ФС) и направление её деятельности определяются не органом, ни анатомической близостью компонентов а динамикой объединения, диктуемой только качеством конечного приспособленного эффекта.

В некоторых случаях формирование саморегулирующихся систем получило название “биологического регулирования ( Wagner, 1958) , но только когда саморегуляция рассматривалась в отношении живых существ. Однако независимо от наименования, для того, чтобы приобрести приспособленный смысл для организма, эти различные формы объединения во всех случаях должны обладать всеми теми свойствами, которые мы формулируем для ФС. Получается, что ФС не относится только к коре головного мозга или даже к целому головному мозгу. Она есть по самой своей сути центрально - периферическое образование, в котором импульсы циркулируют как от центра к периферии, так и от периферии к центру (обратная афферентация ), что создаёт непрерывную информацию центральной нервной системы о достигнутых на периферии результатах.

Необходимо так же охарактеризовать основу или “жизненный узел” всякой ФС – чрезвычайно прочно увязанную функциональную пару – конечный эффект системы и аппарат оценки достаточности или недостаточности этого эффекта при помощи специальных рецепторных образований. Как правило, конечный приспособительный эффект служит основным задачам выживания организма и в той или иной степени жизненно необходим. Это положение абсолютно верно, когда речь идёт о жизненно важных функциях, как то: дыхание, осмотическое давление крови, уровень кровяного давления, концентрация сахара в крови и др. Здесь ФС представляет собой разветвлённую физиологическую организацию, составляющую конкретный физиологический аппарат , служащий поддержанию жизненно важных констант организма (гомеостазис) т.е. осуществление процесса саморегуляции. Когда речь идёт о ФС, то это относится не только к системам с константными конечными, которые располагают большею частью врождёнными механизмами.

Основное отличие в построении и организации данного вида системы, формирование её экстремально или на основе условного рефлекса. Однако, несмотря на столь разные качественные различия, все ФС имеют те же архитектурные особенности, а доказательство этого то, что “ФС действительно является универсальным принципом организации процессов и механизмов, заканчивающихся получением конечного приспособительного эффекта ”. Общепринято ФС рассматривается как единица интегративной деятельности человека.

С помощью экспериментов П.К. Анохин сформулировал основные постулаты в общей теории ФС.

Постулат первый

Ведущим системообразующим фактором ФС любого уровня организации является полезный для жизнедеятельности организма, приспособительный результат.

Постулат второй

Любая функциональная система организма строится на основе принципа саморегуляции: отклонение результата от уровня, обеспечивающего нормальную жизнедеятельность, посредством деятельности соответствующей функциональной системы само является причиной восстановления оптимального уровня этого результата.

Постулат третий

Функциональные системы являются центрально - периферическими образованиями, избирательно объединяющими различные органы и ткани для достижения полезных для организма приспособительных результатов.

Постулат четвёртый

Функциональные системы различного уровня характеризуются изоморфной организацией: они имеют однотипную архитектонику.

Постулат пятый

Отдельные элементы в функциональных системах взаимодействуют достижению их полезных для организма результатов.

Постулат шестой

Функциональные системы и их отдельные части избирательно созревают в процессе онтогенеза, отражая тем самым общие закономерности системогенеза.

Теперь мы знаем, что ФС – это организация активных элементов во взаимосвязи, которое направлено на достижение полезного приспособительного результата. Надо полагать, что настала пора разобрать понятия, которые включены в систему, потому что в этом и заключается основная тема.

Основные понятия в теории ФС.

По разным источникам можно по-разному выделить и основные понятия в ФС. Для начала приведём классическую схему самой системы, а затем разберём её отдельные понятия.



1) Пусковой стимул (иначе раздражение).

2) Обстановочные афферентации.

3) Память.

4) Доминирующая мотивация.

5) Афферентный синтез.

6) Принятие решения.

7) Акцептор результата действия.

8) Программа действия.

9) Эфферентные возбуждения.

10) Действие.

11) Результат действия.

12) Параметры результата

13) Обратная афферентация.

Если мною ничего не забыто, то именно в такой компоновке и работает система. Только во многих работах даже не встречается упоминание о таких частях системы как: установочная афферентация, пусковой стимул. Это заменено одной единственной фразой – афферентный синтез. Он составляет начальную стадию поведенческого акта любой степени сложности, а следовательно и начало работы ФС составляет он же. Важность же афферентного синтеза состоит в том, что он определяет всё последующее поведение организма. Основная задача этой стадии состоит в том, чтобы собрать необходимую информацию о различных параметрах внешней среды. Благодаря ему из множества внешних и внутренних раздражителей организм отбирает главные и создаёт цель поведения (надо полагать здесь параллельно действует механизм доминирующей мотивации) . Считаю, что доминирующая мотивация – это действия в данный момент, направленные на решение, удовлетворение какой-либо нужды, необходимости, желания, которые преобладают над всеми другими побуждениями. Поскольку на выбор такой информации оказывает влияние как цель поведения, так и предыдущий опыт жизнедеятельности, то афферентный синтез всегда индивидуален. Я уже упомянул, что стадия афферентного синтеза включает в себя не один компонент. Согласно данным установочной афферентации и при содействии доминирующей мотивации, базируясь на опыте заложенном в памяти, формируется решение о том что делать. Происходит это в блоке принятия решения. Если к этому блоку доходят сразу несколько пусковых стимулов, то должно сформироваться решение о доминирующем направлении действий (но иногда и о доминирующих, т.е. нескольких) и запуске его в программу выполнения, остальные же должны отсеится и распасться как более не функциональные. Происходит переход к формированию программы действий, которая обеспечивает последующую реализацию одного действия из множества потенциально возможных. Копия выбранного решения передаётся в блок акцептора результата действий, а основная информация поступает в блок эфферентного синтеза. Команда, представленная комплексом эфферентных возбуждений, направляется к периферическим исполнительным органам и воплощается в соответствующее действие. В этом блоке уже содержится некий набор стандартных программ, отработанных в ходе индивидуального и видового опыта для получения положительных результатов. Задача блока на данный момент определить и “подключить” наиболее адекватную программу. Важной чертой ФС являются её индивидуальные и меняющиеся требования к афферентации. Именно количество и качество афферентных импульсаций характеризует степень сложности, произвольности или автоматизированности функциональной системы.

Задачи намеченные к выполнению в блоке принятия решения и запущенные в осуществление и следует называть программой. Чего ради создаётся программа? Ответ уже был дан выше, для того же ради чего существует система – для достижения конечной цели. Это практическая часть системы в отличие от стратегического афферентного синтеза. Но программа по каким-либо внешним воздействиям может не выполнить поставленной цели. Что же из-за этого разрушать всю систему и формировать новую? Это бы было не функционально, обеспечивало бы плохую приспособляемость и требывало бы больше времени. Система не действует по такому пути, уже при исполнении программы в работу вступает акцептор полученного результата. В нём всегда хранится копия полученного ранее решения. Он является необходимой частью ФС – это центральный аппарат оценки результатов и параметров ещё не совершившегося действия. Допустим что должно быть осуществлено некое поведенческое действие, а уже до его осуществления смоделировано представление о нём или образ ожидаемого результата. В процессе реального действия от акцептора идут эфферентные сигналы к нервным моторным структурам, обеспечивающим достижение необходимой цели. Если допустить что из-за каких-то воздействий установочной афферентации поставлена под угрозу жизнь всей системы, то акцептор корректирует программу прямо по ходу её выполнения, причём адекватно с изменениями. А об успешности \ неуспешности поведенческого акта сигнализирует поступающая в мозг афферентная импульсация от всех рецепторов, которые регистрируют последовательные этапы выполнения конкретного действия (обратная афферентация). Оценка поведенческого акта как в целом, так и в деталях невозможна без такой точной информации о результатах каждого из действий. Чтобы гарантировать реализацию любого поведенческого акта необходимо наличие именно этого механизма. Более того, скорее всего организм погиб бы в первые же часы из-за неадекватности действий, если бы подобного механизма не существовало.


Теория функциональных систем была разработана П.К.Анохиным (1935) в результате проводимых им исследований компенсаторных приспособлений нарушенных функций организма. Как показали эти исследования, всякая компенсация нарушенных функций может иметь место только при мобилизации значительного числа физиологических компонентов, зачастую расположенных в различных отделах центральной нервной системы и рабочей периферии, тем не менее, всегда функционально объединенных на основе получения конечного приспособительного эффекта. Такое функциональное объединение различно локализованных структур и процессов на основе получения конечного (приспособительного) эффекта и было названо «функциональной системой» [П.К.Анохин, 1968]. При этом принцип функциональной системы используется как единица саморегуляторных приспособлений в многообразной деятельности целого организма. «Понятие функциональной системы представляет собой, прежде всего, динамическое понятие, в котором акцент ставится на законах формирования какого-либо функционального объединения, обязательно заканчивающегося полезным приспособительным эффектом и включающего в себя аппараты оценки этого эффекта» [П.К.Анохин, 1958]. Ядром функциональной системы является приспособительный эффект, определяющий состав, перестройку эфферентных возбуждений и неизбежное обратное афферентирование о результате промежуточного или конечного приспособительного эффекта. Понятие функциональной системы охватывает все стороны приспособительной деятельности целого организма, а не только взаимодействия или какую-либо комбинацию нервных центров («констелляция нервных центров» - по
А.А.Ухтомскому, 1966) [П.К.Анохин, 1958].
Согласно теории функциональных систем, центральным системообразующим фактором каждой функциональной системы является результат ее деятельности, определяющий в целом для организма условия течения метаболических процессов [П.К.Анохин, 1980]. Именно достаточность или недостаточность результата определяет поведение системы: в случае его достаточности организм переходит на формирование другой функциональной системы с другим полезным результатом, представляющим собой следующий этап в универсальном континууме результатов. В случае недостаточности полученного результата происходит стимулирование активирующих механизмов, возникает активный подбор новых компонентов, создается перемена степеней свободы действующих синаптических организаций и, наконец, после нескольких «проб и ошибок» находится совершенно достаточный приспособительный результат. Таким образом, системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения конкретного полезного результата [П.К.Анохин, 1978].
Были сформулированы основные признаки функциональной системы как интегративного образования:
  1. Функциональная система является центральнопериферическим образованием, становясь, таким образом, конкретным аппаратом саморегуляции. Она поддерживает свое единство на основе циклической циркуляции от периферии к центрам и от центров к периферии, хотя и не является «кольцом» в полном смысле этого слова.
  2. Существование любой функциональной системы непременно связано с получением какого-либо четко очерченного результата. Именно этот результат определяет то или иное распределение возбуждений и активностей по функциональной системе в целом.
  3. Другим абсолютным признаком функциональной системы является наличие рецепторных аппаратов, оценивающих результаты ее действия. Эти рецепторные аппараты в одних случаях могут быть врожденными, в других это могут быть обширные афферентные образования центральной нервной системы, воспринимающие афферентную сигнализацию с периферии о результатах действия. Характерной чертой такого афферентного аппарата является то, что он складывается до получения самих результатов действия.
  4. Каждый результат действия такой функциональной системы формирует поток обратных афферентаций, представляющих все важнейшие признаки (параметры) полученных результатов. В том случае, когда при подборе наиболее эффективного результата эта обратная афферентация закрепляет последнее наиболее эффективное действие, она становится «санкционирующей афферентацией» [П.К.Анохин, 1935].
  5. В поведенческом смысле функциональная система имеет ряд дополнительных широко разветвленных аппаратов.
  6. Жизненно важные функциональные системы, на основе которых строится приспособительная деятельность новорожденных животных к характерным для них экологическим факторам, обладают всеми указанными выше чертами и архитектурно оказываются созревшими точно к моменту рождения. Из этого следует, что объединение частей каждой жизненно важной функциональной системы (принцип консолидации) должно стать функционально полноценным на каком-то сроке развития плода еще до момента рождения [П.К.Анохин, 1968].
Функциональная система всегда гетерогенна. Конкретным механизмом взаимодействия компонентов любой функциональной системы является освобождение их от избыточных степеней свободы, не нужных для получения данного конкретного результата, и, наоборот, сохранение всех тех степеней свободы, которые способствуют получению результата. В свою очередь, результат через характерные для него параметры и благодаря системе обратной афферентации имеет возможность реорганизовать систему, создавая такую форму взаимодействия между ее компонентами, которая является наиболее благоприятной для получения именно запрограммированного результата. Смысл системного подхода состоит в том, что элемент или компонент функционирования не должен пониматься как самостоятельное и независимое образование, он должен пониматься как элемент, чьи степени свободы подчинены общему плану функционирования системы, направляемому получением полезного результата. Таким образом, результат является неотъемлемым и решающим компонентом системы, создающим упорядоченное взаимодействие между всеми другими ее компонентами.
Все ранее известные формулировки систем построены на принципе взаимодействия множества компонентов. Вместе с тем элементарные расчеты показывают, что простое взаимодействие огромного числа компонентов, например, человеческого организма, ведет к бесконечно огромному числу степеней их свободы. Даже оценивая только число степеней свобод основных компонентов центральной нервной системы, но, принимая при этом во внимание наличие, по крайней мере, пяти возможных изменений в градации состояний нейрона , можно получить совершенно фантастическую цифру с числом нулей на ленте длиной более 9 км [П.К.Анохин, 1978]. То есть простое взаимодействие компонентов реально не является фактором, объединяющим их в систему. Именно поэтому в большинство формулировок систем входит термин «упорядочение». Однако, вводя этот термин, необходимо понять, что же «упорядочивает» «взаимодействие» компонентов системы, что объединяет эти компоненты в систему, что является системообразующим фактором. П.К.Анохин (1935, 1958, 1968, 1978, 1980 и др.) считает, что «таким упорядочивающим фактором является результат деятельности системы». Согласно его концепции, только результат деятельности системы может через обратную связь (афферентацию) воздействовать на систему, перебирая при этом все степени свободы и оставляя только те, которые содействуют получению результата. «Традиция избегать результат действия как самостоятельную физиологическую категорию не случайна. Она отражает традиции рефлекторной теории, которая заканчивает «рефлекторную дугу» только действием, не вводя в поле зрения и не интерпретируя результат этого действия» [П.К.Анохин, 1958]. «Смешение причины с основанием и смешение действия с результатами распространено и в нашей собственно повседневной речи» . «Фактически физиология не только не сделала результаты действия предметом научно объективного анализа, но и всю терминологию, выработанную почти на протяжении 300 лет, построила на концепции дугообразного характера течения приспособительных реакций («рефлекторная дуга»)» [П.К.Анохин, 1968]. Но «результат господствует над системой, и над всем формированием системы доминирует влияние результата. Результат имеет императивное влияние на систему: если он недостаточен, то немедленно эта информация о недостаточности результата перестраивает всю систему, перебирает все степени свободы, и, в конце концов, каждый элемент вступает в работу теми своими степенями свободы, которые способствуют получению результата» [П.К.Анохин, 1978].
«Поведение» системы определяется прежде всего ее удовлетворенностью или неудовлетворенностью полученным результатом. В случае удовлетворенности системы полученным результатом, организм «переходит на формирование другой функциональной системы, с другим результатом, представляющим собой следующий этап в универсальном непрерывном континууме результатов» [П.К.Анохин, 1978]. Неудовлетворенность системы результатом стимулирует ее активность в поиске и подборе новых компонентов (на основе перемены степеней свободы действующих синаптических организаций - важнейшего звена функциональной системы) и достижении достаточного результата. Более того, одно из главнейших качеств биологической самоорганизующейся системы состоит в том, что система в процессе достижения окончательного результата непрерывно и активно производит перебор степеней свободы множества компонентов, часто даже в микроинтервалах времени, чтобы включить те из них, которые приближают организм к получению конкретного запрограммированного результата. Получение системой конкретного результата на основе степени содействия ее компонентов определяет упорядоченность во взаимодействии множества компонентов системы, а, следовательно, любой компонент может быть задействован и способен войти в систему только в том случае, если он вносит свою долю содействия в получение запрограммированного результата. В соответствии с этим в отношении компонентов, входящих в систему, более пригоден термин «взаимосодействие» [П.К.Анохин, 1958, 1968 и др.],
отражающий подлинную кооперацию компонентов множества отобранных ею для получения конкретного результата. «Системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения фокусированного полезного результата» [П.К.Анохин, 1978]. Именно потому, что в рассматриваемой концепции результат оказывает центральное организующее влияние на все этапы формирования системы, а сам результат ее функционирования является, по сути, функциональным феноменом, вся архитектура системы была названа функциональной системой [П.К.Анохин, 1978].
Следует подчеркнуть, что «функциональные системы организма складываются из динамически мобилизуемых структур в масштабе целого организма и на их деятельности и окончательном результате не отражается исключительное влияние какой-нибудь участвующей структуры анатомического типа», более того, «компоненты той или иной анатомической принадлежности мобилизуются и вовлекаются в функциональную систему только в меру их содействия получению запрограммированного результата» [П.К.Анохин, 1978]. Введение понятия структуры в систему приводит к ее пониманию как чего-то жестко структурно детерминированного. Вместе с тем, именно динамическая изменчивость входящих в функциональную систему структурных компонентов является одним из ее самых характерных и важных свойств. Кроме того, в соответствии с требованиями, которые функция предъявляет структуре, живой организм обладает крайне важным свойством внезапной мобилизуемости его структурных элементов. «.Существование результата системы как определяющего фактора для формирования функциональной системы и ее фазовых реорганизаций и наличие специфического строения структурных аппаратов, дающего возможность немедленной мобилизации объединения их в функциональную систему, говорят о том, что истинные системы организма всегда функциональны по своему типу», а это значит, что «функциональный принцип выборочной мобилизации структур является доминирующим» [П.К.Анохин, 1978].
Не менее важным обстоятельством является то, что функциональные системы, обеспечивающие какой-то результат, можно изолировать только с дидактической целью. В конечном итоге единственно полноценной функциональной системой является собственно живой организм, существующий в непрерывном пространственно-временном континууме получаемых приспособительных результатов. Выделение любых функциональных систем в организме в достаточной степени искусственно и может быть оправдано лишь с позиций облегчения их исследования. Вместе с тем, эти «функциональные системы» сами по себе являются взаимосодействующими компонентами целостных функциональных систем используемых организмом в процессе своего существования в среде. Поэтому, по мнению П.К.Анохина (1978), говоря о составе функциональной системы, необходимо иметь в виду тот факт, что «...каждая функциональная система, взятая для исследования, неизбежно находится где-то между тончайшими молекулярными системами и наиболее высоким уровнем системной организации в виде, например, целого поведенческого акта».
Независимо от уровня своей организации и от количества составляющих их компонентов функциональные системы имеют принципиально одну и ту же функциональную архитектуру, в которой результат является доминирующим фактором, стабилизирующим организацию систем [П.К.Анохин, 1978].
Центральная архитектура целенаправленного поведенческого акта развертывается последовательно и включает следующие узловые механизмы:
  1. Афферентный синтез.
  2. Принятие решения.
  3. Формирование акцептора результата действия.
  4. Обратная афферентация (эфферентный синтез).
  5. Целенаправленное действие.
  6. Санкционирующая стадия поведенческого акта [П.К.Анохин, 1968].
Таким образом, функциональная система по П.К.Анохину (1935) - это
«законченная единица деятельности любого живого организма и состоящая из целого ряда узловых механизмов, которые обеспечивают логическое и физиологическое формирование поведенческого акта».
Образование функциональной системы характеризуется объединением частных физиологических процессов организма в единое целое, обладающее своеобразием связей, отношений и взаимных влияний именно в тот момент, когда все эти компоненты мобилизованы на выполнение конкретной функции.
Однако мне хотелось бы обратить внимание читателя на одно из высказываний великого физиолога: «Как целостное образование любая
функциональная система имеет вполне специфические для нее свойства, которые в целом придают ей пластичность, подвижность и в какой-то степени независимость от готовых жестких конструкций различных связей, как в пределах самой центральной системы, так и в масштабе целого организма» [П.К.Анохин, 1958, 1968]. Именно здесь кроется ошибка. П.К.Анохина и это именно тот момент, который обусловил фактическую невозможность до последнего времени реального применения теории функциональных систем в науке и практике. П.К.Анохин (1958, 1968) наделил функциональные системы свойством практически безграничной лабильности (возможности неограниченного выбора компонентов для получения одного и того же «полезного результата») и таким образом лишил функциональные системы присущих им черт функционально-структурной специфичности [С.Е.Павлов,
2000].
Тем не менее, функциональные системы обладают свойством относительной лабильности лишь на определенных этапах своего формирования, постепенно теряя это свойство к моменту окончательного формирования системы [С.Е.Павлов, 2000]. В этом случае целостные функциональные системы организма (по «внешнему» содержанию - его многочисленные поведенческие акты) становятся предельно специфичными и «привязываются» к вполне конкретным структурным образованиям организма [С.Е.Павлов, 2000, 2001]. Другими словами пробегание 100-метровой
дистанции трусцой и с максимальной скоростью - две совершенно разные функциональные системы бега, обеспечиваемые различными структурными компонентами. Равно как примерами различных функциональных систем являются, например, проплывания с одной скоростью, но разными стилями одной и той же дистанции. Более того, изменение любых параметров двигательного акта при сохранении одинакового конечного результата также будет свидетельствовать о «задействовании» в реализации данных поведенческих актов различных функциональных систем, «собранных» из различных структурно-функциональных компонентов. Однако это положение не принимается сегодня ни физиологами, ни спортивными педагогами (в противном случае последним придется кардинальным образом пересмотреть свои позиции по вопросам теории и методики спортивной тренировки). Так
В.Н.Платоновым (1988, 1997) в защиту концепции абсолютной лабильности функциональных систем приводятся данные о проплывании соревновательной дистанции Линой Качюшите, свидетельствующие о том, что одного и того же конечного результата можно достичь при разной частоте гребковых движений. Однако, здесь г-н Платонов проигнорировал как ряд положений теории функциональных систем П.К.Анохина (1935, 1958, 1968 и др.), описывающих особенности формирования целостных функциональных систем поведенческих актов, так и дополнения к теории функциональных систем, сделанные
В.А.Шидловским (1978, 1982) и обязывающие оценивать не только конечный результат, но и максимум его параметров [С.Е.Павлов, 2000]. Более того, указанные положения и дополнения привносят необходимость оценки максимума параметров всего рабочего цикла функциональной системы. Пример же, приведенный В.Н.Платоновым (1988, 1997), свидетельствует лишь о том, что один и тот же конечный результат может быть достигнут с использованием различных функциональных систем. Не одно и то же идти за водой к колодцу во дворе или к роднику, находящемуся в нескольких километрах от дома, хотя конечные результаты и той и другой деятельности - наличие воды в доме - будут одинаковыми [С.Е.Павлов, 2000].
П.К.Анохин (1968) писал: «Совершенно очевидно, что конкретные механизмы интеграции, связанные с определенными структурными образованиями, могут менять свою характеристику и удельный вес в процессе динамических превращений функциональной системы». В связи с этим следует вспомнить о свойстве функциональной системы изменяться в процессе своего формирования и признать, что на начальных этапах своего формирования функциональная система обязательно должна быть в достаточной степени лабильна. В противном случае окажется невозможным перебор множества всевозможных сочетаний исходно «свободных» компонентов с целью поиска единственно необходимых для формирующейся системы. В то же время сформированная функциональная система всегда должна быть предельно «жестка» и обладать минимумом лабильности. Следовательно, на разных этапах своего формирования функциональная система будет обладать различными уровнями лабильности, а сам процесс формирования любой функциональной системы должен сопровождаться сужением пределов ее лабильности, определяемых уже исключительно параметрами промежуточных и конечного результатов.

Понравилась статья? Поделиться с друзьями: