Революция уже близко: ядерный синтез превращается в реальность

Масса представляет собой особую форму энергии, о чем и свидетельствует известная формула Эйнштейна E = mc 2 . Из нее следует возможность преобразования массы в энергию и энергии в массу. И такие реакции на внутриатомном уровне вещества реально имеют место. В частности, часть массы атомного ядра может превращаться в энергию, и происходит это двумя путями. Во-первых, крупное ядро может распасться на несколько мелких — такой процесс называется реакцией распада . Во-вторых, несколько более мелких ядер могут объединиться в одно более крупное — это так называемая реакция синтеза . Реакции ядерного синтеза во Вселенной распространены очень широко — достаточно упомянуть, что именно из них черпают энергию звезды. Ядерный распад сегодня служит одним из основных источников энергии для человечества — он используется на атомных электростанциях. И при реакции распада, и при реакции синтеза совокупная масса продуктов реакции меньше совокупной массы реагентов. Эта-то разница в массе и преобразуется в энергию по формуле E = mc 2 .

Распад

В природе уран встречается в форме нескольких изотопов, один из которых — уран-235 (235 U) — самопроизвольно распадается с выделением энергии. В частности, при попадании достаточно быстрого нейтрона в ядро атома 235 U последнее распадается на два крупных куска и ряд мелких частиц, включая, обычно, два или три нейтрона. Однако сложив массы крупных фрагментов и элементарных частиц, мы недосчитаемся определенной массы по сравнению с массой исходного ядра до его распада под воздействием удара нейтрона. Эта-то недостающая масса и выделяется в виде энергии, распределенной среди получившихся продуктов распада — прежде всего, кинетической энергии (энергии движения). Стремительно движущиеся частицы разлетаются от места распада и сталкиваются с другими частицами вещества, разогревая их.

Они представляют собой стремительно разлетающиеся от места распада частицы, при этом далеко они не улетают, врезаясь в соседние атомы вещества и разогревая их. Таким образом, энергия, порождаемая ядерным распадом, преобразуется в теплоту окружающего вещества.

В уране, добываемом из природной урановой руды, изотопа урана-235 содержится всего 0,7% от общей массы урана — остальные 99,3% приходятся на долю относительно устойчивого (слабо радиоактивного) изотопа 238 U, который просто поглощает свободные нейтроны, не распадаясь под их воздействием. Поэтому для использования урана в качестве топлива в ядерных реакторах его нужно предварительно обогатить — то есть довести содержание радиоактивного изотопа 235 U до уровня не менее 5%.

После этого уран-235 в составе обогащенного природного урана в атомном реакторе распадается под воздействием бомбардировки нейтронами. В результате из одного ядра 235 U выделяется в среднем 2,5 новых нейтрона, каждый из которых вызывает распад еще 2,5 ядер, и запускается так называемая цепная реакция. Условием для продолжения незатухающей реакции распада урана-235 является превышение числа выделяемых распадающимися ядрами нейтронов числа нейтронов, покидающих урановый конгломерат; в этом случае реакция продолжается с выделением энергии.

В атомной бомбе реакция носит умышленно неконтролируемый характер, в результате чего за доли секунды распадается огромное число ядер 235 U и выделяется колоссальная по своей разрушительности взрывная энергия. В атомных реакторах, используемых в энергетике, реакцию распада необходимо строго контролировать с целью дозирования выделяемой энергии. Хорошим поглотителем нейтронов является кадмий — его-то обычно и используют для управления интенсивностью распада в реакторах АЭС. Кадмиевые стержни погружают в активную зону реактора до уровня, необходимого для снижения скорости выделения свободной энергии до технологически разумных пределов, а в случае падения энерговыделения ниже необходимого уровня частично выводят стержни из активной зоны реакции, после чего реакция распада интенсифицируется до необходимого уровня. Выделившаяся тепловая энергия затем в обычном порядке (посредством турбогенераторов) преобразуется в электрическую.

Синтез

Термоядерный синтез — реакция прямо противоположная реакции распада по своей сути: более мелкие ядра объединяются в более крупные. Самая распространенная во Вселенной реакция вообще — это реакция термоядерного синтеза ядер гелия из ядер водорода: она непрерывно протекает в недрах практически всех видимых звезд. В чистом виде она выглядит так: четыре ядра водорода (протона) образуют атом гелия (2 протона + 2 нейтрона) с выделением ряда других частиц. Как и в случае реакции распада атомного ядра совокупная масса образовавшихся частиц оказывается меньше массы исходного продукта (водорода) — она и выделяется в виде кинетической энергии частиц-продуктов реакции, за счет чего звезды и разогреваются.

В недрах звезд реакция термоядерного синтеза происходит не единовременно (когда сталкиваются 4 протона), а в три этапа. Сначала из двух протонов образуется ядро дейтерия (один протон и один нейтрон). Затем, после попадания в ядро дейтерия еще одного протона, образуется гелий-3 (два протона и один нейтрон) плюс другие частицы. И наконец, два ядра гелия-3 сталкиваются, образуя гелий-4, два протона, а также другие частицы. Однако по совокупности эта трехэтапная реакция дает чистый эффект образования из четырех протонов ядра гелия-4 с выделением энергии, уносимой быстрыми частицами, прежде всего фотонами (см. Эволюция звезд).

Естественная реакция термоядерного синтеза происходит в звездах; искусственная — в водородной бомбе. Увы, человек до сих пор не сумел найти средств для того, чтобы направить термоядерный синтез в управляемое русло и научиться получать за счет него энергию для использования в мирных целях. Однако ученые не теряют надежды на достижение положительных результатов в области получения «мирной и дешевой» термоядерной энергии уже в обозримом будущем — для этого главное научиться удерживать высокотемпературную плазму либо посредством лазерных лучей, либо посредством сверхмощных тороидальных электромагнитных полей (см.

Так как между атомными ядрами на малых расстояниях действуют ядерные силы притяжения, при сближении двух ядер возможно их слияние, т. е. синтез более тяжелого ядра. Все атомные ядра имеют положительный электрический заряд и, следовательно, на больших расстояниях отталкиваются друг от друга. Для того чтобы ядра могли сблизиться и вступить в ядерную реакцию синтеза, они должны обладать достаточной кинетической энергией для преодоления взаимного электрического отталкивания, которое тем больше, чем больше заряд ядра. Поэтому проще всего осуществляется синтез легких ядер с малым электрическим зарядом. В лаборатории реакции синтеза можно наблюдать, обстреливая мишень быстрыми ядрами, разогнанными в специальном ускорителе (см. Ускорители заряженных частиц). В природе реакции синтеза происходят в очень горячем веществе, например в недрах звезд, в том числе в центре Солнца, где температура 14 млн градусов и энергия теплового движения некоторых самых быстрых частиц достаточна для преодоления электрического отталкивания. Ядерный синтез, происходящий в разогретом веществе, называют термоядерным.

Термоядерные реакции, идущие в недрах звезд, играют очень важную роль в эволюции Вселенной. Они - источник ядер химических элементов, которые синтезируются из водорода в звездах. Они - источник энергии звезд. Основным источником энергии Солнца являются реакции так называемого протон-протонного цикла, в результате которых из 4 протонов рождается ядро гелия. Выделяющаяся при синтезе энергия уносится образующимися ядрами, квантами электромагнитного излучения, нейтронами и нейтрино. Наблюдая поток нейтрино, идущий от Солнца, можно установить, какие ядерные реакции синтеза и с какой интенсивностью происходят в его центре.

Уникальная особенность термоядерных реакций как источника энергии - очень большое энерговыделение на единицу массы реагирующих веществ - в 10 млн раз больше, чем в химических реакциях. Вступление в синтез 1 г изотопов водорода эквивалентно сгоранию 10 т бензина. Поэтому ученые давно стремятся овладеть этим гигантским источником энергии. В принципе мы умеем уже сегодня получать на Земле энергию термоядерного синтеза. Нагреть вещество до звездных температур можно, используя энергию атомного взрыва. Так устроена водородная бомба - самое страшное оружие современности, в которой взрыв ядерного запала приводит к мгновенному нагреву смеси дейтерия с тритием и последующему термоядерному взрыву.

Но не к такому неуправляемому синтезу, способному погубить все живое на Земле, стремятся ученые. Они ищут способы осуществления управляемого термоядерного синтеза. Какие же условия должны быть для этого выполнены? Прежде всего, конечно, нужно нагреть термоядерное горючее до температуры, когда реакции синтеза могут происходить с заметной вероятностью. Но этого мало. Необходимо, чтобы при синтезе выделялось больше энергии, чем затрачивается на нагрев вещества, или, что еще лучше, чтобы рождающиеся при синтезе быстрые частицы сами поддерживали требуемую температуру горючего. Для этого нужно, чтобы вступающее в синтез вещество было надежно теплоизолировано от окружающей и, естественно, холодной на Земле среды, т. е. чтобы время остывания, или, как говорят, время удержания энергии, было достаточно велико.

Требования к температуре и времени удержания зависят от используемого горючего. Легче всего осуществить синтез между тяжелыми изотопами водорода - дейтерием (Д) и тритием (Т). При этом в результате реакции получается ядро гелия (He 4) и нейтрон. Дейтерий имеется на Земле в огромных количествах в морской воде (один атом дейтерия на 6000 атомов водорода). Тритий же в природе отсутствует. Сегодня его получают искусственно, облучая в ядерных реакторах нейтронами литий. Отсутствие трития не является, однако, препятствием для использования Д-Т реакции синтеза, так как образующийся при реакции нейтрон можно использовать для воспроизводства трития, облучая литий, запасы которого на Земле достаточно велики.

Для осуществления Д-Т реакции наиболее выгодны температуры около 100 млн градусов. Требование же ко времени удержания энергии зависит от плотности реагирующего вещества, которое при такой температуре неизбежно будет находиться в виде плазмы, т. е. ионизированного газа. Так как интенсивность термоядерных реакций тем выше, чем выше плотность плазмы, требования ко времени удержания энергии обратно пропорциональны плотности. Если выражать плотность в виде числа ионов в 1 см 3 , то для Д-Т реакции при оптимальной температуре условие получения полезной энергии можно записать в виде: произведение плотности n на время удержания энергии τ должно быть больше 10 14 см −3 с, т. е. плазма с плотностью 10 14 ионов в 1 см 3 должна заметно остывать не быстрее, чем за 1 с.

Так как тепловая скорость ионов водорода при требуемой температуре 10 8 см/с, за 1 с ионы пролетают 1000 км. Поэтому нужны специальные устройства, предотвращающие попадание плазмы на стенки, теплоизолирующие её. Плазма - газ, состоящий из смеси ионов и электронов. На заряженные частицы, движущиеся поперек магнитного поля, действует сила, искривляющая их траекторию и заставляющая двигаться по окружностям с радиусами, пропорциональными импульсу частиц и обратно пропорциональными магнитному полю. Таким образом, магнитное поле может предотвратить уход заряженных частиц в направлении, перпендикулярном силовым линиям. На этом основана идея магнитной термоизоляции плазмы. Магнитное поле, однако, не препятствует движению частиц вдоль силовых линий: в общем случае частицы движутся по спиралям, навиваясь на силовые линии.

Физики придумали разные хитрости, предотвращающие уход частиц вдоль силовых линий. Можно, например, сделать «магнитные пробки» - области с более сильным магнитным полем, отражающие часть частиц, но лучше всего свернуть силовые линии в кольцо, использовать тороидальное магнитное поле. Но и одного тороидального поля, оказывается, недостаточно.

Тороидальное поле неоднородно в пространстве - его напряженность спадает по радиусу, а в неоднородном поле возникает медленное движение заряженных частиц - так называемый дрейф - поперек магнитного поля. Ликвидировать этот дрейф можно, пропустив через плазму ток вдоль обхода тора. Магнитное поле тока, складываясь с тороидальным внешним полем, сделает общее поле винтовым.

Двигаясь по спиралям вдоль силовых линий, заряженные частицы будут переходить из верхней полуплоскости тора в нижнюю и обратно. При этом они будут все время дрейфовать в одну сторону, например вверх. Но, находясь в верхней полуплоскости и дрейфуя вверх, частицы уходят от средней плоскости тора, а находясь в нижней полуплоскости и дрейфуя тоже вверх, частицы возвращаются к ней. Так дрейфы в верхней и нижней половинах тора взаимно компенсируются и не приводят к потерям частиц. Именно так и устроена магнитная система установок типа Токамак, на которых получены наилучшие результаты по нагреву и термоизоляции плазмы.

Кроме термоизоляции плазмы необходимо обеспечить также её нагрев. В Токамаке для этой цели можно использовать ток, протекающий по плазменному шнуру. В других устройствах, где удержание осуществляется без тока, а также и в самом Токамаке для нагрева до очень высоких температур используют и иные способы нагрева, например с помощью высокочастотных электромагнитных волн, инжекции (введения) в плазму пучков быстрых частиц, световых пучков, генерируемых мощными лазерами, и т. д. Чем больше мощность нагревающего устройства, тем быстрее можно нагреть плазму до требуемой температуры. Разработка в последние годы очень мощных лазеров и источников пучков релятивистских заряженных частиц позволила нагревать малые объемы вещества до термоядерных температур за очень малое время, столь малое, что вещество успевает нагреться и вступить в реакции синтеза раньше, чем разлететься из‑за теплового движения. В таких условиях дополнительная термоизоляция оказалась ненужной. Единственное, что удерживает частицы от разлета,- это их собственная инерция. Термоядерные устройства, основанные на этом принципе, называют устройствами с инерционным удержанием. Это новое направление исследований, которое называется инерционным термоядерным синтезом, усиленно развивается в настоящее время.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

ГОУ ВПО «Благовещенский государственный педагогический университет»

Физико-математический факультет

Кафедра общей физики

Курсовая работа

на тему: Проблемы термоядерного синтеза

по дисциплине: Физика

Исполнитель: В.С. Клетченко

Руководитель: В.А. Евдокимова

Благовещенск 2010


Введение

Термоядерные реакции и их энергетическая выгодность

Условия протекания термоядерных реакций

Осуществление термоядерных реакций в земных условиях

Основные проблемы, связанные с осуществлением термоядерных реакций

Осуществление управляемых термоядерных реакций в установках типа «ТОКАМАК»

Проект ИТЭР

Современные исследования плазмы и термоядерных реакций

Заключение

Литература


Введение

В настоящее время человечество не может представить свою жизнь без электроэнергии. Она везде. Но традиционные способы получения электроэнергии не дешевые: только представить возведение ГЭС или реактора АЭС, то сразу становится понятно почему. Ученые 20-го века, перед лицом энергетического кризиса, нашли способ получения электроэнергии из вещества, количество которого не ограничено. Термоядерные реакции протекают при распаде дейтерия и трития. В одном литре воды содержится дейтерия столько, что при термоядерном синтезе может выделиться столько энергии, сколько получается при сжигании 350 литров бензина. То есть можно сделать вывод, что вода - это неограниченный источник энергии.

Если бы получение энергии с помощью термоядерного синтеза было бы настолько просто, как при помощи ГЭС, то человечество никогда не испытывало бы кризиса в энергетике. Для получения энергии таким способом необходима температура, эквивалентная температуре в центре солнца. Где взять такую температуру, как дорого будут стоить установки, насколько выгодна такая добыча энергии и безопасна ли такая установка? На эти вопросы будет дан ответ в настоящей работе.

Цель работы: изучение свойств и проблем термоядерного синтеза.


Термоядерные реакции и их энергетическая выгодность

Термоядерная реакция - синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер.

Известно, что ядро атома водорода представляет собой протон р. Такого водорода очень много в природе – в воздухе и в воде. Кроме этого существуют более тяжелые изотопы водорода. Ядро одного из них содержит, кроме протона р, еще и нейтрон n. Называется этот изотоп дейтерием D. Ядро другого изотопа содержит, кроме протона р два нейтрона n и называется тритерием (тритием) Т. Термоядерные реакции наиболее эффективно происходят при сверхвысоких температурах порядка 10 7 – 10 9 К. При термоядерных реакциях выделяется очень большая энергия, превышающая энергию, которая выделяется при делении тяжелых ядер. В реакции синтеза выделяется энергия, которая в расчете на 1кг вещества значительно больше энергии, выделяющейся в реакции деления урана. (Здесь под выделяющейся энергией понимается кинетическая энергия частиц, образующихся в результате реакции.) Например, при реакции слияния ядер дейтерия 1 2 D и трития 1 3 Т в ядро гелия 2 4 Не:

1 2 D + 1 3 Т → 2 4 Не + 0 1 n,

Выделяется энергия, приблизительно равная 3,5 МэВ на один нуклон. В реакциях деления энергия на один нуклон составляет около 1 МэВ.

При синтезе ядра гелия из четырех протонов:

4 1 1 p→ 2 4 Не + 2 +1 1 е,

выделяется еще большая энергия, равная 6,7 МэВ на одну частицу. Энергетическая выгодность термоядерных реакций объясняется тем, что удельная энергия связи в ядре атома гелия значительно превышает удельную энергию связи ядер изотопов водорода. Таким образом, при удачном осуществлении управляемых термоядерных реакций человечество получит новый мощный источник энергии.

Условия протекания термоядерных реакций

Для слияния легких ядер необходимо преодолеть потенциальный барьер, обусловленный кулоновским отталкиванием протонов в одноименно положительно заряженных ядрах. Для слияния ядер водорода 1 2 Dих надо сблизить на расстояние r, равное приблизительно r ≈ 3 10 -15 м. Для этого нужно совершить работу, равную электростатической потенциальной энергии отталкивания П=е 2: (4πε 0 r) ≈ 0,1 МэВ. Ядра дейтона смогут преодолеть такой барьер, если при соударении их средняя кинетическая энергия 3 / 2 kT будет равна 0,1 МэВ. Это возможно при Т=2 10 9 К. Практически температура, необходимая для протекания термоядерных реакций снижается на два порядка и составляет 10 7 К.

Температура порядка 10 7 К характерна для центральной части Солнца. Спектральный анализ показал, что в веществе Солнца, как и многих других звезд, имеется до 80% водорода и около 20% гелия. Углерод, азот и кислород составляют не более 1% массы звезд. При огромной массе Солнца (≈ 2 10 27 кг) количество этих газов достаточно велико.

Термоядерные реакции происходят на Солнце и звездах и являются источником энергии, обеспечивающим их излучение. Ежесекундно Солнце излучает энергию3,8 10 26 Дж, что соответствует уменьшению его массы на 4,3 млн. тонн. Удельное выделение энергии Солнца, т.е. выделение энергии, приходящееся на единицу массы Солнца в одну секунду, равно 1,9 10 -4 Дж/с кг. Оно весьма мало и составляет около 10 -3 % от удельного выделения энергии в живом организме в процессе обмена веществ. Мощность излучения Солнца практически не изменилась за много миллиардов лет существования Солнечной системы.

Один из путей протекания термоядерных реакций на Солнце – углеродно-азотный цикл, в котором соединение ядер водорода в ядро гелия облегчается в присутствии ядер углерода 6 12 С играющих роль катализаторов. В начале цикла быстрый протон проникает в ядро атома углерода 6 12 С и образует неустойчивое ядро изотопа азота 7 13 N с излучением γ-кванта:

6 12 С + 1 1 p→ 7 13 N + γ.

С периодом полураспада 14 минут в ядре 7 13 N происходит превращение 1 1 p→ 0 1 n + +1 0 е + 0 0 ν е и образуется ядро изотопа 6 13 С:

7 13 N→ 6 13 С + +1 0 е + 0 0 ν е.

приблизительно через каждые 32 млн. лет ядро 7 14 N захватывает протон и превращается в ядро кислорода 8 15 О:

7 14 N+ 1 1 p→ 8 15 О + γ.

Неустойчивое ядро 8 15 О с периодом полураспада 3 минуты испускает позитрон и нейтрино и превращается в ядро 7 15 N:

8 15 О→ 7 15 N+ +1 0 е+ 0 0 ν е.

Цикл завершается реакцией поглощения ядром 7 15 N протона с распадом его на ядро углерода 6 12 С и α-частицу. Это происходит приблизительно через 100 тысяч лет:

7 15 N+ 1 1 p→ 6 12 С + 2 4 Не.


Новый цикл начинается вновь с поглощением углеродом 6 12 С протона, исходящего в среднем через 13 миллионов лет. Отдельные реакции цикла отдалены во времени промежутками, которые являются по земным масштабам времени непомерно большими. Однако цикл является замкнутым и происходит непрерывно. Поэтому различные реакции цикла происходят на Солнце одновременно, начавшись в разные моменты времени.

В результате этого цикла четыре протона сливаются в ядро гелия с появлением двух позитронов и γ-излучения. К этому нужно добавить излучение, возникающее при слиянии позитронов с электронами плазмы. При образовании одного гамматома гелия выделяется 700 тысяч кВт ч энергии. Это количество энергии компенсирует потери энергии Солнца на излучение. Расчеты показывают, что количества водорода, имеющегося на Солнце, хватит на поддержание термоядерных реакций и излучения Солнца на миллиарды лет.

Осуществление термоядерных реакций в земных условиях

Осуществление термоядерных реакций в земных условиях создаст огромные возможности для получения энергии. Например, при использовании дейтерия, содержащегося в одном литре воды, в реакции термоядерного синтеза выделится столько же энергии, сколько выделится при сгорании примерно 350 литров бензина. Но если термоядерная реакция будет протекать самопроизвольно, то произойдет колоссальный взрыв, так как выделяющаяся при этом энергия очень велика.

Условия, близкие к тем, что реализуются в недрах Солнца, были осуществлены в водородной бомбе. Там происходит самоподдерживающаяся термоядерная реакция взрывного характера. Взрывчатым веществом является смесь дейтерия 1 2 D с тритием 1 3 Т. Высокая температура, необходимая для протекания реакции, получается за счет взрыва обычной атомной бомбы, помещенной внутри термоядерной.


Основные проблемы, связанные с осуществлением термоядерных реакций

В термоядерном реакторе реакция синтеза должна происходить медленно, должна быть возможность управлять ею. Изучение реакций, происходящих в высокотемпературной дейтериевой плазме, является теоретической основой получения искусственных управляемых термоядерных реакций. Основной трудностью является поддержание условий, необходимых для получения самоподдерживающейся термоядерной реакции. Для такой реакции необходимо, чтобы скорость выделения энергии в системе, где происходит реакция, была не меньше, чем скорость отвода энергии от системы. При температурах порядка 10 8 К термоядерные реакции в дейтериевой плазме обладают заметной интенсивностью и сопровождаются выделением большой энергии. В единице объема плазмы при соединении ядер дейтерия выделяется мощность 3кВт/м 3 . При температурах порядка 10 6 К мощность составляет всего лишь 10 -17 Вт/м 3 .

«Мы сказали, что поместим Солнце в коробку. Идея прекрасна. Но проблема в том, что мы не знаем, как создать эту коробку» - Пьер Жиль де Жен, лауреат нобелевской премии по физике 1991 года.

В то время, как тяжёлых элементов, требующихся для ядерных реакций на Земле и в целом в космосе довольно мало, лёгких элементов для термоядерных реакций очень много как на Земле, так и в космосе. Поэтому идея использовать термоядерную энергию во благо человечества пришла практически сразу с пониманием процессов, лежащих в её основе – это сулило поистине безграничные возможности, так как запасов термоядерного топлива на Земле должно было хватить на десятки тысяч лет вперёд.

Уже в 1951 году появились два основных направления развития термоядерных реакторов: Андреем Сахаровым и Игорем Таммом была разработана архитектура токамака в котором рабочая камера представляла из себя тор, в то время как Лайманом Спитцером была предложена архитектура более замысловатой конструкции по форме более всего напоминающая лист Мёбиуса перевёрнутый не один, а несколько раз.

Простота принципиальной конструкции токамака позволила длительное время развивать это направление за счёт повышения характеристик обычных и сверхпроводящих магнитов, а также путём постепенного увеличения размеров реактора. Но с повышением параметров плазмы постепенно стали также проявляться и проблемы с её нестабильным поведением, которые тормозили процесс.

Сложность конструкции стеллатора и вовсе привела к тому что после первых экспериментов в 50-х годах развитие этого направления на долгое время остановилось. Новое дыхание оно получило совсем недавно с появлением современных систем автоматизированного проектирования, которые позволили спроектировать стеллатор Wendelstein 7-X с необходимыми для его работы параметрами и точностью конструкции.

Физика процесса и проблемы в его реализации

Атомы железа имеют максимальную энергию связи на нуклон – то есть показатель энергии которую нужно затратить чтобы разделить атом на его составляющие нейтроны и протоны, делённый на их общее количество. Все атомы с меньшей и большей массой имеют этот показатель ниже железа:

При этом в термоядерных реакциях слияния лёгких атомов вплоть до железа выделяется энергия, а масса образующегося атома становится слегка меньше суммы масс исходных атомов на величину, соотносящуюся с выделяемой энергией по формуле E=mc² (так называемый дефект массы). Таким же образом выделяется энергия при ядерных реакциях деления атомов тяжелее железа.

При реакциях слияния атомов выделяется огромная энергия, но для того чтобы извлечь эту энергию нам в начале необходимо приложить определённое усилие для преодоления сил отталкивания между атомными ядрами которые являются положительно заряженными (преодолеть кулоновский барьер). После того как нам удалось сблизить пару атомов на необходимое расстояние в действие вступает сильное ядерное взаимодействие, которое связывает нейтроны и протоны. Для каждого вида топлива кулоновский барьер для начала реакции отличается также, как и отличается оптимальная температура реакции:

При этом первые термоядерные реакции атомов начинают фиксироваться задолго до достижения средней температурой вещества этого барьера благодаря тому, что кинетическая энергия атомов подвержена распределению Максвелла:

Но реакция при относительно низкой температуре (порядка нескольких млн °C) идёт крайне медленно. Так скажем в центре температура достигает 14 млн °C, но удельная мощность термоядерной реакции в таких условиях составляет только 276,5 Вт/м³, а для полного расходования своего топлива Солнцу требуются несколько млрд лет. Такие условия являются неприемлемыми для термоядерного реактора, так как при таком низком уровне выделения энергии мы неизбежно будем затрачивать на нагрев и сжатие термоядерного топлива больше, чем будем получать от реакции взамен.

По мере роста температуры топлива всё большая доля атомов начинает обладать энергией, превышающий кулоновский барьер и эффективность реакции растёт, достигая своего пика. С дальнейшим повышением температуры скорость реакции снова начинает падать уже за счёт того, что кинетическая энергия атомов становится слишком большой и они «проскакивают» мима друг друга не в состоянии удержаться сильным ядерным взаимодействием.

Таким образом решение как получить энергию из управляемой термоядерной реакции было получено довольно быстро, но вот реализация этой задачи затянулась на полвека и так ещё до конца и не закончена. Причина этого кроется в поистине безумных условиях, в которые оказалось необходимо поместить термоядерное топливо – для положительного выхода от реакции его температура должна была составлять несколько десятков млн °C.

Такую температуру физически не могли выдержать никакие стенки, но эта проблема почти сразу привела и к её решению: так как разогретое до таких температур вещество является горячей плазмой (полностью ионизованным газом) которое заряжено положительно, то решение оказалось лежащим на поверхности – нам просто надо было поместить такую разогретую плазму в сильное магнитное поле, которое будет удерживать термоядерное топливо на безопасном расстоянии от стенок.

Прогресс на пути его реализации

Исследования по данной теме идут в нескольких направлениях сразу:

  1. с помощью использования сверхпроводящих магнитов учёные стараются сократить энергию, затрачиваемую на зажигание и поддержание реакции;
  2. с помощью новых поколений сверхпроводников повышается индукция магнитного поля внутри реактора, которая позволяет удерживать плазму с более высокими показателями плотности и температуры, что увеличивает удельную мощность реакторов на единицу их объёма;
  3. исследования в области горячей плазмы и успехи в сфере вычислительной техники позволяют лучше контролировать потоки плазмы, тем самым приближая термоядерные реакторы к их теоретическим пределам эффективности;
  4. прогресс в предыдущей области также позволяет дольше удерживать плазму в стабильном состоянии, что увеличивает эффективность реактора за счёт того, что нам не надо так часто разогревать плазму вновь.

Не смотря на все трудности и проблемы, лежавшие на пути к управляемой термоядерной реакции, эта история уже приближается к своему финалу. В энергетике принято использовать показатель EROEI – energy return on energy investment (соотношение затраченной энергии при производстве топлива к тому объёму энергии, который мы из него получаем в итоге) для расчёта эффективности топлива. И в то время как EROEI угля продолжает расти, то этот показатель у нефти и газа достиг своего пика в середине прошлого века и теперь неуклонно падает за счёт того, что новые месторождения этих топлив находятся во всё в более труднодоступных местах и на всё больших глубинах:

При этом наращивать производство угля мы также не можем по той причине, что получение энергии из него является очень грязным процессом и буквально уносит жизни людей прямо сейчас от различных заболеваний лёгких. Так или иначе мы сейчас стоим на пороге заката эры ископаемых топлив – и это не происки экологов, а банальные экономические расчёты при взгляде в будущее. При этом EROI у экспериментальных термоядерных реакторов, появившихся также в середине прошлого века, неуклонно росли и в 2007 году достигли психологического барьера в единицу – то есть в этом году человечеству впервые удалось получить посредством термоядерной реакции больше энергии, чем затратить на её осуществление. И несмотря на то что на реализацию реактора , эксперименты с ним и производство уже первой демонстрационной термоядерной электростанции DEMO на основе полученного при реализации ITER опыта потребуется ещё много времени. Уже нет никаких сомнений в том, что за такими реакторами находится наше будущее.

Авария на японской станции Фукусима во второй раз продемонстрировала всему миру опасность атомной энергетики. В странах Европы прошли демонстрации против использования атомных станций. И все же, нет оснований считать, что АЭС больше не будут строиться. Жители Земли потребляют все больше и больше энергии. Для некоторых регионов, где запасы природного угля, нефти и газа минимальны, атомная энергия необходима. К сожалению, альтернативные источники энергии, такие как энергия солнечного света, ветра, волн и т.д. не способны принципиально заменить огромное количество потребляемой человечеством энергии (16 ТВт). Их доля в мировом производстве энергии пока составляет всего 0,5%.

Между тем, современный мир стоит перед очень серьезным энергетическим кризисом. Проблема связана с тем, что по всем серьезным прогнозам запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (программа CCS) для предотвращения серьезных изменений в климате планеты.

Сейчас крайне необходим новый мощный источник энергии. Настало время прорыва. Иначе человечество может само себя уничтожить в борьбе за оставшиеся под землей запасы нефти и газа.

Самой серьезной альтернативой современным источникам энергии ученые считают управляемый термоядерный синтез.

Ядерный синтез, являющийся основой существования Солнца и звезд, потенциально представляет собой неистощимый источник энергии для развития вселенной вообще.

Эксперименты, проводимые в Великобритании в рамках программы Joint European Torus (JET), являющейся одной из ведущих исследовательских программ в мире, показывают, что ядерный синтез может обеспечить не только текущие энергетические потребности человечества, но и гораздо большее количество энергии.

Пример термоядерной реакции — дейтерий + тритий

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.

Именно эту реакцию предполагается использовать в будущих термоядерных реакторах. Но осуществить эту реакцию и сделать ее управляемой очень сложно. Для инициирования (зажигания) реакции синтеза необходимо нагреть газ из смеси дейтерия и трития до температуры выше 100 миллионов градусов Цельсия, что примерно в десять раз выше температуры в центре Солнца. При этой температуре наиболее «энергетические» дейтроны и тритоны (ядра дейтерия и трития) сближаются при столкновениях на столь близкие расстояния, что между ними начинают действовать мощные ядерные силы, заставляющие их сливаться друг с другом в единое целое.

Осуществление процесса ядерного синтеза в лаборатории связано с очень сложными проблемами. Для решения задачи нагрева и удержания газовой смеси ядер D и T были придуманы «магнитные бутылки», получившие название «Токамак» , которые предотвращают взаимодействие плазмы со стенками реактора. Началом современной эпохи в изучении возможностей термоядерного синтеза следует считать 1969 год, когда на российской установке Токамак Т3 в плазме объемом около 1 м 3 была достигнута температура 3 10 6 °C. После этого ученые во всем мире признали конструкцию токамака наиболее перспективной для магнитного удержания плазмы. Уже через несколько лет было принято смелое решение о создании установки JET (Joint European Torus) со значительно большим объемом плазмы (~100 м 3). Эта установка начала работать в 1983 году и остается пока крупнейшим в мире токамаком, обеспечивающим нагрев плазмы до температуры 150 10 6 °C.

В настоящее время во Франции начинается строительство международного экспериментального термоядерного реактора ITER. Расшифровывается аббревиатура как International Tokamak Experimental Reactor, но в настоящее время название ITER официально не считается аббревиатурой, а связывается с латинским словом iter — путь.

На рисунке - проект строительства реактора ITER в местечке Кадараш, Франция

Задачи, стоящие на пути создания термоядерных реакторов и преимущества ядерной энергетики очень подробно и доступно для понимания были изложены в лекции «На пути к термоядерной энергетике», прочитанной председателем Совета ITER Кристофером Ллуэллин-Смитом в ФИАНе. (http:///elementy.ru/lib/430807)

ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. Проблемы и сложности эксплуатации такой установки связаны, прежде всего, с тем, что мощный поток высокоэнергетических нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и разрушают материалы, из которых он создан. Вторая основная проблема состоит в обеспечении высокой прочности конструкционных материалов реактора при длительной (в течение нескольких лет) бомбардировке нейтронами и под воздействием потока тепла. Третья и, возможно, самая главная проблема состоит в обеспечении высокой надежности работы. Таким образом, проектирование и постройка термоядерных станций требуют от физиков и инженеров решения целого ряда разнообразных и очень сложных технологических задач.

Однако, несмотря на все сложности, проблема стоит того, чтобы ей заниматься самым серьезным образом. Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Например, количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 ГВт составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.

Дейтерий является устойчивым изотопом водорода. Примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.

Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO 2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.

Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

Термоядерная энергетика не только обещает человечеству, в принципе, возможность производства огромного количества энергии в будущем (без выбросов CO 2 и без загрязнения атмосферы), но и обладает повышенной безопасностью. Используемая в термоядерных установках плазма имеет очень низкую плотность (примерно в миллион раз ниже плотности атмосферы), вследствие чего рабочая среда установок никогда не будет содержать в себе энергии, достаточной для возникновения серьезных происшествий или аварий. Кроме того, загрузка «топливом» должна производиться непрерывно, что позволяет легко останавливать ее работу, не говоря уже о том, что в случае аварии и резкого изменения условий окружения термоядерное «пламя» должно просто погаснуть.

В чем состоят связанные с ядерной энергетикой опасности? Во-первых, стоит отметить, что оболочка реактора при длительном нейтронном облучении может стать радиоактивной. Однако при подборе для оболочки материалов с заданными свойствами можно обеспечить распад радиоактивных продуктов с периодом полураспада порядка 10 лет, а полная замена всех компонентов могла бы осуществляться через 100 лет. В случае полного отказа контура охлаждения радиоактивность стенок будет продолжать выделять тепло, но максимальная температура будет значительно ниже того значения, при котором установка расплавится.

Во-вторых, тритий является радиоактивным и имеет относительно небольшой период полураспада (12 лет). Но хотя объем используемой плазмы значителен, из-за ее низкой плотности там содержится лишь очень небольшое количество трития (общим весом примерно как десять почтовых марок). Поэтому, даже при самых тяжелых ситуациях и авариях (полное разрушение оболочки и выделение всего содержащегося в ней трития, например, при землетрясении и падении самолета на станцию), в окружающую среду поступит лишь незначительное количество топлива, что не потребует эвакуации населения из близлежащих населенных пунктов.

Основное препятствие на пути развития исследований в области ядерного синтеза состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и исследовать в малых размерах, поскольку для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.

За последние два десятилетия наблюдался и значительный прогресс в теоретическом понимании поведения плазмы. В этой области необходимо отметить два результата, имеющих особую важность в рассматриваемых задачах:

1. Была обнаружена способность горячей плазмы (предсказанная ранее в лаборатории Culham, Великобритания) к самогенерации собственного тока, что получило название «зашнуровки» плазмы. Например, можно ожидать, что примерно 80% от тока величиной 15 MA, необходимого для удержания плазмы в реакторе ITER, будет возникать на основе этого эффекта, в результате чего поддержание рабочего режима реактора потребует намного меньше энергии, а само управление его работой станет гораздо более простым.

2. В Институте физики плазмы в Гархинге (Garching, Германия) в экспериментах по термоядерному слиянию наблюдался режим «высокого удержания», позволяющий значительно повысить давление в системе (то есть увеличить эффективность работы установки) при некоторых значениях магнитного поля в установке.

Реактор ITER создается консорциумом, в который входят Европейское Сообщество, Япония, Россия, США, Китай, Южная Корея и Индия. Общая численность населения этих стран составляет около половины всего населения Земли, так что проект можно назвать глобальным ответом на глобальный вызов. Основные компоненты и узлы реактора ITER уже созданы и испытаны, а строительство уже начато в местечке Кадараш (Франция). Запуск реактора запланирован на 2019 год, а получение дейтерий-водородной плазмы — на 2026 год, так как ввод реактора в действие требует длительных и серьезных испытаний для плазмы из водорода и дейтерия.

Как сказал Кристофер Ллуэллин-Смит, председатель Совета ИТЭР: «Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но я лично полагаю, что вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.»

На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству» . Возможно, это время пришло.



Понравилась статья? Поделиться с друзьями: