Азот и его соединения. Степень окисления азота - учимся разбираться

Существуют химические элементы, проявляющие разные степени окисления, что позволяет образовывать в ходе химических реакций большое количество соединений с определенными свойствами. Зная электронное строение атома, можно предположить, какие вещества будут образовываться.

Степени окисления азота могут варьировать от -3 до +5, что указывает на многообразие соединений на его основе.

Характеристика элемента

Азот относится к химическим элементам, расположенным в 15 группе, во втором периоде в периодической системе Менделеева Д. И. Ему присвоены порядковый номер 7 и сокращенное буквенное обозначение N. В нормальных условиях сравнительно инертный элемент, для проведения реакций необходимы специальные условия.

В природе встречается в виде двухатомного бесцветного газа атмосферного воздуха с объемной долей более 75%. Содержится в составе белковых молекул, кислот нуклеиновых и азотсодержащих веществ неорганического происхождения.

Структура атома

Чтобы определить степень окисления азота в соединениях, необходимо знать его ядерную структуру и изучить электронные оболочки.

Природный элемент представлен двумя устойчивыми изотопами, с числом их массы 14 или 15. В первом ядре содержится 7 нейтроновых и 7 протоновых частиц, а во втором − на 1 нейтроновую частицу больше.

Существуют искусственные разновидности его атома с массой 12-13 и 16-17, обладающие нестабильными ядрами.

При изучении электронной структуры атомарного азота видно, что имеется две электронные оболочки (внутренняя и внешняя). На 1s-орбитали содержится одна пара электронов.

На второй внешней оболочке присутствует всего пять отрицательно заряженных частиц: две на 2s-под-уров-не и три на 2p-орбитале. Ва-лент-ный энер-ге-ти-че-ский уровень не имеет свободных ячеек, что указывает на невозможность разделения его элек-трон-ной пары. Орбиталь 2р считается заполненной электронами только наполовину, что позволяет присоединить 3 отрицательно заряженные частицы. В таком случае степень окисления азота равна -3.

Учитывая строение орбиталей, можно сделать вывод, что данный элемент с координационным числом 4 максимально связывается только с четырьмя другими атомами. Для образования трех связей используется об-мен-ный ме-ха-низ-м, еще одна формируется до-нор-но-ак-цеп-тор-ным способом.

Степени окисления азота в разных соединениях

Максимальное количество отрицательных частиц, которое способен присоединить его атом, равняется 3. В таком случае проявляется степень его окисления равная -3, присущая соединениям типа NH 3 или аммиаку, NH 4 + или аммонию и нитридам Me 3 N 2 . Последние вещества формируются при повышении температуры путем взаимодействия азота с атомами металлов.

Наибольшее количество отрицательно заряженных частиц, которое способен отдать элемент, приравнивается к 5.

Два атома азота способны соединяться между собой с образованием устойчивых соединений со степенью окисления -2. Такая связь наблюдается в N 2 H 4 или гидразинах, в азидах различных металлов или MeN 3 . Атом азота присоединяет на свободные орбитали 2 электрона.

Существует степень окисления -1, когда данный элемент получает только 1 отрицательную частицу. Например, в NH 2 OH или гидроксиламине он заряжен отрицательно.

Бывают положительного знака степени окисления азота, когда с внешнего энергетического слоя забираются электронные частицы. Варьируют они от +1 до +5.

Заряд 1+ имеется у азота в N 2 O (одновалентном оксиде) и в гипонитрите натрия с формулой Na 2 N 2 O 2 .

В NO (двухвалентном оксиде) элемент отдает два электрона и заряжается положительно (+2).

Существует степень окисления азота 3 (в соединении NaNO 2 или нитриде и еще в трехвалентном оксиде). В таком случае отщепляется 3 электрона.

Заряд +4 бывает в оксиде с валентностью IV или его димере (N 2 O 4).

Положительный знак степени окисления (+5) проявляется в N 2 O 5 или в пятивалентном оксиде, в азотной кислоте и ее производных солях.

Соединения из азота с водородом

Природные вещества на основе двух вышеуказанных элементов напоминают органические углеводороды. Только азотоводороды теряют свою устойчивость при увеличении количества атомарного азота.

К наиболее значимым водородным соединениям относят молекулы аммиака, гидразина и азотистоводородной кислоты. Их получают путем взаимодействия водорода с азотом, а в последнем веществе присутствует еще кислород.

Что такое аммиак

Его еще называют нитридом водорода, а его химическая формула обозначается как NH 3 с массой 17. В условиях с нормальной температурой и давлением аммиак имеет форму бесцветного газа с резким нашатырным запахом. По плотности он в 2 раза реже воздуха, легко растворяется в водной среде за счет полярного строения его молекулы. Относится к малоопасным веществам.

В промышленных объемах аммиак получают с помощью каталитического синтеза из водородных и азотных молекул. Существуют лабораторные методы получения из аммонийных солей и натрия нитрита.

Строение аммиака

В составе молекулы пирамидальной присутствует один азот и 3 атома водорода. Расположены они по отношению друг к другу под углом 107 градусов. В молекуле, имеющей форму тетраэдра, азот расположен по центру. За счет трех неспаренных p-электронов он соединяется полярными связями ковалентной природы с 3 атомарными водородами, у которых имеются по 1 s-электрону. Так образуется аммиачная молекула. В данном случае азот проявляет степень окисления -3.

У данного элемента находится еще неподеленная пара электронов на внешнем уровне, которая создает связь ковалентную с ионом водорода, имеющим положительный заряд. Один элемент является донором отрицательно заряженных частиц, а другой акцептором. Так образуется аммонийный ион NH 4 + .

Что такое аммоний

Его относят к положительно заряженным полиатомным ионам или катионам.Аммоний еще причисляют к химическим веществам, которые не могут существовать в форме молекулы. Он состоит из аммиака и водорода.

Аммоний с положительным зарядом в присутствии различных анионов с отрицательным знаком способен образовывать аммонийные соли, в которых ведет себя подобно металлам с валентностью I. Также при его участии синтезируются аммониевые соединения.

Многие соли аммония существуют в виде кристаллических бесцветных веществ, которые хорошо растворяются водой. Если соединения иона NH 4 + образованы летучими кислотами, то в условиях нагревания происходит их разложение с выделением газообразных веществ. Последующее их охлаждение приводит к обратимому процессу.

Стабильность таких солей зависит от силы кислот, из которых они образованы. Устойчивые соединения аммония соответствуют сильному кислотному остатку. Например, стабильный аммония хлорид производится из соляной кислоты. При температуре до 25 градусов такая соль не разлагается, что нельзя сказать о карбонате аммония. Последнее соединение часто используется в кулинарии для подъема теста, заменяя пищевую соду.

Кондитеры карбонат аммония называют просто аммонием. Такую соль применяют пивовары для улучшения брожения пивных дрожжей.

Качественной реакцией для обнаружения ионов аммония является действие гидроксидов щелочных металлов на его соединения. В присутствие NH 4 + происходит высвобождение аммиака.

Химическая структура аммония

Конфигурация его иона напоминает правильный тетраэдр, по центру которого находится азот. Атомы водорода расположены по вершинам фигуры. Чтобы рассчитать степень окисления азота в аммонии, нужно помнить, что общий заряд катиона равен +1, а у каждого иона водорода отсутствует по одному электрону, а их всего 4. Суммарный водородный потенциал составляет +4. Если из заряда катиона вычесть заряд всех ионов водорода, то получим: +1 - (+4) = -3. Значит, азот имеет степень окисления -3. В данном случае он присоединяет три электрона.

Что такое нитриды

Азот способен соединяться с более электроположительными атомами металлической и неметаллической природы. В результате образуются соединения схожие с гидридами и карбидами. Такие вещества азотсодержащие называют нитриды. Между металлом и азотным атомом в соединениях выделяют ковалентную, ионную и промежуточную связи. Именно такая характеристика лежит в основе их классификации.

К нитридам ковалентным относят соединения, в химической связи которых электроны не переходят от атомарного азота, а образуют вместе с заряженными отрицательно частицами других атомов общее электронное облако.

Примером таких веществ являются водородные нитриды, типа аммиачных и гидразиновых молекул, а также азотные галогениды, к которым относят трихлориды, трибромиды и трифториды. У них общая электронная пара одинаково принадлежит двум атомам.

К нитридам ионным относят соединения с химической связью, образованной переходом электронов от элемента металла на свободные уровни у азота. В молекулах таких веществ наблюдается полярность. Нитриды имеют степень окисления азота 3-. Соответственно, общий заряд металла будет 3+.

К таким соединениям относят нитриды магния, лития, цинка или меди, за исключением щелочных металлов. Они обладают высокой температурой плавления.

К нитридам с промежуточной связью относятся вещества, у которых распределены равномерно атомы металлов и азота и отсутствует четкое смещение электронного облака. К таким инертным соединениям принадлежат нитриды железа, молибдена, марганца и вольфрама.

Описание оксида трехвалентного азота

Его еще называют ангидридом, полученным из кислоты азотистой, имеющей формулу HNO 2 . Учитывая степени окисления азота (3+) и кислорода (2-) в триоксиде, получается соотношение атомов элементов 2 к 3 или N 2 O 3 .

Жидкая и газообразная форма ангидрида - это весьма неустойчивые соединения, они легко распадаются на 2 разных оксида с валентностью IV и II.

1) Нитриды - соединения азота с менее электроотрицательными элементами, например, с металлами и с рядом неметаллов.

Получение нитридов

Известны несколько методов получения нитридов.

1) Метод синтеза из простых веществ. При высоких температурах азот окисляет

многие металлы и неметаллы, образуя нитриды, в которых проявляет степень

окисления-3:

3Mg + N 2 = Mg 3 N 2

3Si + N 2 = Si 3 N 2

Из ковалентных нитридов наибольшее значение имеет нитрид водорода H3N

(аммиак), получаемый в промышленности синтезом из простых веществ:

3H 2 +N 2 = 2H 3 N

Основная масса производимого аммиака используется для получения азотной кислоты.

2) Метод восстановления из оксидов в присутствии азота. В качестве восстановителя в этих процессах используют не только углерод, но и металлы или их гидриды:

TiO 2 + CH 2 +N 2 = TiN +CaO +H 2 O

3) Метод термической диссоциации. Этот метод осуществляется с применением соединений, содержащих одновременно и металл и азот, например аминохлоридов:

TiCl 4 · 4NH 3 = TiN + NH 3 + HCl

Таким способом получают нитриды AlN, VN, NbN, Ta 3 N 5 , CrN, U 3 N, Fe 2 N.

4) Метод осаждения нитридов из газовой фазы. Примером этого метода может служить взаимодействие хлоридов и оксихлоридов металлов с аммиаком. Эти реакции происходят обычно при температурах порядка 800oC

MeCl 4 + NH 3 →MeN + HCl

MeOCl 3 + NH3→MeN + H 2 O + HCl

Химические свойства нитридов

Свойства нитридов более или менее закономерно изменяются по периодам и группам периодической системы. Например, в малых периодах наблюдается переход от основных нитридов к кислотным:

Na 3 N Mg 3 N 2 AlN Si 3 N 4 P 3 N 5 S 3 N 4 Cl 3 N

основные амфотерный кислотные

Нитриды s-элементов первой и второй групп, например Na3N, Mn 3 N 2 , являются кристаллическими веществами. Химически они довольно активны.

Например, легко разлагаются водой, образуя щелочь и аммиак:

Na 3 N + 3H 2 O = 3NaOH + H 3 N

Кислотные нитриды, напримерCl3N, гидролизуются с образованием кислот и аммиака:

Cl 3 N + 3H 2 O = 3HClO + H 3 N

Основные нитриды взаимодействуют с кислотами:

Mg 3 N 2 + HCl = MgCl 2 +H 3 N

При этом кислотные нитриды склонны к взаимодействию со щелочами:

BN + H 2 O + NaOH→BO 2 Na + H 3 N

Амфотерные нитриды, в частности AlN, могут реагировать как с кислотами, так и со щелочами:



2ALN + H 2 SO 4 + 6H 2 O = 2Al(OH) 3 + (NH 4) 2 SO 4

AlN + 3H 2 O + KOH→Al(OH) 4 K+ H 3 N

Основные и кислотные нитриды вступают в реакции комплексообразования с образованием смешанных нитридов, например Li 5 TiN 3 , Li 5 GeN 3 и другие

5LI 3 N + Ge 3 N 4 = 3Li 5 GeN 3

осн. кисл.

Нитриды щелочных металлов – малоустойчивые соединения. При обычной температуре с кислородом воздуха они не взаимодействуют. При температурах плавления начинают разлагаться на элементы.

Все ковалентные нитриды довольно устойчивы. Особенно устойчивы нитриды алюминия, бора и кремния, которые начинают слабо разлагаться на элементы только при температурах 1000-1200оC. Они обладают высокой стойкостью против окисления, против действия расплавленных металлов, горячих кислот, различных агрессивных газов.

Металлоподобные нитриды обладают высокой химической стойкостью, особенно против действия холодных и кипящих кислот, многих расплавленных металлов, а также против окисления на воздухе. В растворах щелочей металлоподобные нитриды менее устойчивы. Они быстро разлагаются при сплавлении со щелочами и солями щелочных металлов.

Гидразин

Гидразин (NH 2 NH 2) – это сильно гигроскопическая жидкость, обладающая заметной способностью поглощать из воздуха углекислоту и кислород. Замерзает гидразин при температуре плюс 1,5°, кипит при температуре 113,5° (давление 760 мм рт. ст.). Удельный вес вещества колеблется в зависимости от его агрегатного состояния и температуры окружающей среды. При температуре минус 5° плотность твердого гидразина составляет 1,146, жидкого при температуре 0°-1,0253, а при температуре +15°-1,0114. По мере дальнейшего возрастания температуры удельный вес соединения уменьшается. Гидразин хорошо растворяется в воде, спиртах, аммиаке, аминах. Он нерастворим в углеводородах и их галоидопроизводных. Водные растворы обладают основными свойствами. Гидразин является сильным восстановителем. Благодаря этому он термодинамически неустойчив и легко разлагается под влиянием катализаторов, при нагревании до высоких температур, при действии излучений. На воздухе горит синим пламенем. При этом выделяется значительное количество энергии.

В промышленности гидразин получают по методу Рашига, первая стадия которого состоит в действии хлора на аммиак, в результате чего образуется непрочный хлорамин:

NH 2 Cl + NH 3 + NaOH = NH 2 -NH 2 + NaCl + H 2 O

Химические свойства гидразина определяются, во-первых, тем, что его молекула состоит из двух аминогрупп, обладающих слабо основными свойствами. В соответствии с этим гидразин как слабое основание может реагировать как с одной, так и с двумя молекулами одноосновной кислоты, например соляной:

N 2 H 4 + HCl = N 2 H 5 Cl

N 2 H 4 + 2HCl = N 2 H 6 Cl 2

Его реакция с серной кислотой приводит к гидразин-сульфату(N 2 H 6 SO 4) который, как всякая соль, является твердым веществом, хорошо растворимым в воде. Гидразин-сульфат под названием "Сигразин" нашел применение в медицине при лечении больных раком. Онкологические больные обычно испытывают сильное истощение, быструю потерю веса и аппетита. Эти явления вызываются нарушениями углеводного обмена.

Другая особенность гидразина - его сильнейшие восстановительные свойства, что вызвано как присутствием в его молекуле непрочной связи азот-азот, так и аномальной степенью окисления атомов азота (-2). В качестве примера восстановительных свойств гидразина можно привести его реакцию с перманганатом калия, которую можно использовать для аналитического определения гидразина, как и реакции с некоторыми другими окислителями:

5(NH 2 -NH 2) + 4KMnO 4 + 6H 2 SO 4 =5N 2 + 2K 2 SO 4 + 4MnSO 4 + 16H 2 O

Гидразин сгорает на воздухе, причем эта реакция сильно экзотермична и приводит к образованию газообразных продуктов:

NH 2 -NH 2 + O 2 = N 2 + 2H 2 O + 149,5 ккал/моль

Гидроксиламин

В молекуле гидроксиламина атом азота имеет непоселенную пару электронов. Поэтому, подобно аммиаку и гидразину, он способен к реакциям присоединения с образованием связен по донорно-акцепторному способу. Гидроксиламин хорошо растворяется в воде, а с кислотами дает соли, например хлорид гидроксиламмония. Степень окислениости азота в гидроксила мине равна -1. Поэтому он проявляет как восстановительные, так и окислительные свойства. Однако более характерна восстановительная способность гидроксиламина. В частности, он применяется как восстановитель (главным образом в виде солей) в лабораторной практике.

Химические свойства:

В водном растворе диссоциирует по основному типу, являясь слабым основанием:

NH 2 OH + H 2 O = + + OH -

Может также диссоциировать и по кислотному типу

NH 2 OH + H 2 O = NH 2 O - + H 3 O +

Подобно NH 3 , гидроксиламин реагирует с кислотами, образуя соли гидроксиламиния:

NH 2 OH + HCl = Cl

На воздухе соединение является нестабильным:

3NH 2 OH = N 2 + NH 3 + 3H 2 O

но при давлении в 3 кПа (2,25 мм рт.ст.) плавится при 32 °С и кипит при 57 °С без разложения.

На воздухе легко окисляется кислородом воздуха:

4NH 2 OH + O 2 = 6H 2 O + 2N 2

Гидроксиламин проявляет свойства восстановителя, при действии на него окислителей выделяются N 2 или N 2 O:

В некоторых реакциях NH 2 OH проявляются окислительные свойства, при этом он восстанавливается до NH 3 или NH 4 +

Получение

В лаборатории получают разложением в вакууме солей гидроксиламина: (NH 3 OH) 3 PO 4 или (ClO 4) 2 .

Спиртовой раствор гидроксиламина можно получить действием этанола на NH 3 OHCl.

В промышленности соли гидроксиламина получают восстановлением NO водородом в присутствии платинового катализатора или гидрированием азотной кислоты, а также действием на азотную кислоту атомарным водородом.

Азот - едва ли не самый распространенный химический элемент во всей Солнечной Системе. Если быть конкретнее, то азот занимает 4 место по распространенности. Азот в природе - инертный газ.

Этот газ не имеет ни цвета, ни запаха, его очень трудно растворить в воде. Однако соли-нитраты имеют свойство очень хорошо реагировать с водой. Азот имеет малую плотность.

Азот - удивительный элемент. Есть предположение, что свое название он получил из древнегреческого языка, что в переводе с него значит «безжизненный, испорченный». Отчего же такое негативное отношение к азоту? Ведь нам известно, что он входит в состав белков, а дыхание без него практически невозможно. Азот играет важную роль в природе. Но в атмосфере этот газ инертен. Если его взять таким, какой он есть в первозданном виде, то возможно множество побочных эффектов. Пострадавший может даже умереть от удушья. Ведь азот оттого и называется безжизненным, что не поддерживает ни горения, ни дыхания.

При обычных условиях такой газ реагирует только с литием, образовывая такое соединение, как нитрид лития Li3N. Как мы видим, степень окисления азота в таком соединении равна -3. С остальными металлами и конечно же, реагирует тоже, однако лишь при нагревании или при использовании различных катализаторов. К слову говоря, -3 - низшая степень окисления азота, так как только 3 электрона нужны для полного заполнения внешнего энергетического уровня.

Этот показатель имеет разнообразные значения. Каждая степень окисления азота имеет свое соединение. Такие соединения лучше просто запомнить.

5 - высшая степень окисления у азота. Встречается в и во всех солях-нитратах.

Вариант 1.



1. Число нейтронов в атоме 4N14:
А. 7.


Б. Азоту.

3. Азот имеет степень окисления +5 в соединении с формулой:
Г. HN03.

4. Минимальная степень окисления азота в соединении (из перечисленных ниже) с формулой:
А. N2.


Б. Фосфор.

6. Наименьший радиус у атома:
Г. F.


Б. Са3Р2.

8. Азотистой кислоте соответствует оксид с формулой:
Б. N203.

10. Коэффициент перед окислителем в реакции, схема которой
Ag + HN03(KOHЦ) -> AgN03 + N02 + Н20:

Б. 4.


11. Составьте молекулярные уравнения реакций следующих превращений:
Р -> Р205 -> H3P04 -> Na3P04.

1. 4Р + 5О2 = 2Р2О5
P0 -5e →P+5 восстановитель
O20 + 2*2e→2O-2 окислитель
2. Р2О5 + 3Н2О = 2Н3РО4
3. Н3РО4 + 3NaOH = Na3PO4 + 3H2O
3Н+ + 3OH- = 3H2O

12. Дополните фразу: «Аллотропия - это...»
существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам.

13. С какими из веществ, формулы которых: КОН, С02, Zn, CuO, НС1, СаС03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 + КOH → КNO3 + H2O
3CuO + 6HNO3 = 3Cu(NO3)2 + 3H2O
10HNO3 разбавл. + 4Zn = 4Zn(NO3)2 + NH4NO3 + 3H2O
2HNO3 + CaCO3 = Ca(NO3)2 + H2O + CO2

14. Закончите схему термического разложения нитрата меди (II):
Cu(N03)2 --> CuO + X + 02.

2Cu(NO3)2 = 2CuO + 4NO2 + O2
Сумма коэфф. = 9

15. При взаимодействии 37 г гидроксида кальция с сульфатом аммония было получено 15 г аммиака. Вычислите массовую долю выхода аммиака от теоретически возможного.
Ca(OH) 2 +(NH4)2 SO4 =CaSO4+2NH3*H2O
M Ca(OH)2=40+32+2=74г/моль.
n Ca(OH)2 =37: 74=0.5 моль
1 моль Са(ОH)2: 2 моль NH3
0.5:1 моль
M NH3 = 17г \моль
масса 17*1=17 г.
выход (NH3)=15: 17=0.88=88%

Вариант 2.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 7N15:
А. 8.


В. Фосфору.

3. Азот имеет степень окисления +4 в соединении с формулой:
B. N02.

4. Минимальная степень окисления фосфора в соединении с формулой:
Б. РН3.

5. Из перечисленных химических элементов наибольшей электроотрицательностью в соединениях обладает:
В. Сера

6. Наименьший радиус у атома, символ которого:
Г. С1.

7. Только восстановителем может быть вещество с формулой:
B. NH3.

8. Фосфористой кислоте Н3Р03 соответствует оксид с формулой:
В. Р2О3


Сu + HN03(KOHЦ) -> CU(N03)2 + N02 + Н20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций, идущих по схеме
NO → N02 → HN03 → NaN03.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. HNO3 + NaOH = NaNO3 + H2O
H+ + OH- = H2O

12. Дополните следующую фразу: «Селитра - это...»
Азотнокислая соль калия, натрия, аммония, употребляемая в технике взрывчатых веществ и в агрономии для удобрений.

13. С какими из веществ, формулы которых: Mg, Ag, AgN03, BaO, C02, KN03, NaOH, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Mg + 2H3PO4 = Mg3(PO4)2↓ + 3H2
2H3PO4 +3BaO = Ba3(PO4)2 + 3H2O
Na3PO4 + 3AgNO3 = Ag3PO4↓ + 3NaNO3

14. Закончите схему термического разложения нитрата натрия
NaN03 → NaN02 + X.
Найдите сумму коэффициентов в уравнении.

2NaNO3 = 2NaNO2 + O2
Сумма коэффициентов – 5

15. Какой объем аммиака (н. у.) можно получить при взаимодействии 15 м3 азота с избытком водорода, если выход аммиака составляет 10% от теоретически возможного?
N2 + 3H2 = 2NH3
n(N2) = 15 000 /22,4 = 669 (моль)
n(NH3) = 2*669 = 1339,28 (моль)
Vтеор.(NH3) = 1339,28*22,4= 29999 (дм3)
Vпракт. (NH3) = 29999*0,9 = 26999 (дм3) = 26, 999 м3

Вариант 3.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 20Са40:
Б. 20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 5е соответствует:
А. Азоту.

3. Азот имеет степень окисления +2 в соединении с формулой:
Б. NO.

4. Максимальная степень окисления азота в соединении с формулой:
Г. HN03.


А. Бор.


А. С.


Г. Н3Р04.

8. Азотной кислоте соответствует оксид с формулой:
Г. N205.

10. Коэффициент перед окислителем в схеме
Ag + HN03(paзб) -> AgN03 + NO + H20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме
N2 → NH3 → NH3 Н20 → (NH4)2S04.
Уравнение 1 рассмотрите с точки зрения теории ОВР, уравнение 3 запишите в ионном виде.

1. N2 + 3H2 = 2NH3
N20 +2*3е→2N-3 окислитель
H20 -2*1е→2H+1 восстановитель
2. NH3 + H2O = NH3*H20
3. 2NH3*H20 + H2SO4 = (NH4)2SO4 +2H2O
2NH3*H20 + 2H+= 2NH4+ +2H2O

12. Дополните фразу: «Число атомов, входящих в катион аммония...»
равно 5.

13. С какими из веществ, формулы которых: S03, КОН, CaO, Mg, N205, Na2C03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 (разб.) + КOH = КNO3 + H2O
2HNO3 + CaO = Ca(NO3)2 + H2O
10HNO3 разбавл. + 4Mg = 4Mg(NO3)2 + N2O + 3H2O
2HNO3 + Na2CO3 = 2NaNO3 + H2O + CO2

14. Закончите схему термического разложения нитрата серебра
AgNOg → Ag + X + 02.
Укажите сумму коэффициентов в уравнении.

2AgNO3 = 2Ag + 2NO2 + O2
7

15. Азот объемом 56 л (н. у.) прореагировал с избытком водорода. Объемная доля выхода аммиака составляет 50% от теоретически возможного. Рассчитайте объем полученного аммиака.
N2 + 3H2 = 2NH3
n(N2) = 56 /22,4 = 2,5 (моль)
n(теор.)(NH3) = 2*2,5 = 5 (моль)
Vпракт. (NH3) = 5*22,4*0,5 = 56 л

Вариант 4.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в изотопе 19K39:
В.20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 8е, 5е соответствует:
Б. Фосфору.

3. Азот имеет степень окисления 0 в соединении с формулой:
A. N2.

4. Максимальная степень окисления фосфора в соединении с формулой:
Г. Н3Р04.

5. Из перечисленных химических элементов наименьшей электроотрицательностью в соединениях обладает:
А. Бериллий.

6. Наибольший радиус у атома химического элемента, символ которого:
A. Si.

7. Только окислителем может быть вещество с формулой:
Г. HN03.

8. Ортофосфорной кислоте соответствует оксид с формулой:
Г. Р2О5.

10. Коэффициент перед окислителем в схеме
Си + HN03(paзб) -> CU(N03)2 + NO + Н20:

Г. 8.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме:
NO → N02 → HN03 → NH4N03.
Уравнение 1 рассмотрите с точки зрения ОВР, уравнение 3 запишите в ионном виде.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. NH3 + HNO3 = NH4NO3
NH3 + H+ = NH4+

12. Дополните фразу: «Аллотропными видоизменениями фосфора являются...»
белый, красный и черный фосфор

13. С какими из веществ, формулы которых: Zn, CuO, Си, NaOH, S02, NaN03, K2C03, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Zn + 2H3PO4 = Zn3(PO4)2↓ + 3H2
3CuO + 2H3PO4 = Cu3(PO4)2 + 3H2O
3K2CO3 + 2H3PO4 = 2K3PO4 + 3H2O + 3CO2

14. Закончите схему термического разложения нитрата железа (II):
Fe(N03)2 → FeO + N02 + X.
Найдите сумму коэффициентов в уравнении.

2Fe(NO3)2 = 2FeO + 4NO2 + O2

15. При сжигании в кислороде 62 г фосфора было получено 130 г оксида фосфора (V) от теоретически возможного. Вычислите массовую долю выхода оксида фосфора (V).
4P + 5O2 = 2P2O5
n(P) = 62/31 = 2 моль
nтеор.(P2O5) = 0,5*2 = 1 моль
mтеор.(P2O5) = 1*142 = 142 г
выход = mпракт./mтеор. = 130/142=0.92 = 92%



Понравилась статья? Поделиться с друзьями: